35 research outputs found

    Rapamycin rescues mitochondrial myopathy via coordinated activation of autophagy and lysosomal biogenesis

    Get PDF
    Abstract The mTOR inhibitor rapamycin ameliorates the clinical and biochemical phenotype of mouse, worm, and cellular models of mitochondrial disease, via an unclear mechanism. Here, we show that prolonged rapamycin treatment improved motor endurance, corrected morphological abnormalities of muscle, and increased cytochrome c oxidase (COX) activity of a muscle‐specific Cox15 knockout mouse (Cox15sm/sm). Rapamycin treatment restored autophagic flux, which was impaired in naïve Cox15sm/sm muscle, and reduced the number of damaged mitochondria, which accumulated in untreated Cox15sm/sm mice. Conversely, rilmenidine, an mTORC1‐independent autophagy inducer, was ineffective on the myopathic features of Cox15sm/sm animals. This stark difference supports the idea that inhibition of mTORC1 by rapamycin has a key role in the improvement of the mitochondrial function in Cox15sm/sm muscle. In contrast to rilmenidine, rapamycin treatment also activated lysosomal biogenesis in muscle. This effect was associated with increased nuclear localization of TFEB, a master regulator of lysosomal biogenesis, which is inhibited by mTORC1‐dependent phosphorylation. We propose that the coordinated activation of autophagic flux and lysosomal biogenesis contribute to the effective clearance of dysfunctional mitochondria by rapamycin

    Rapamycin rescues mitochondrial myopathy via coordinated activation of autophagy and lysosomal biogenesis.

    Get PDF
    The mTOR inhibitor rapamycin ameliorates the clinical and biochemical phenotype of mouse, worm, and cellular models of mitochondrial disease, via an unclear mechanism. Here, we show that prolonged rapamycin treatment improved motor endurance, corrected morphological abnormalities of muscle, and increased cytochrome c oxidase (COX) activity of a muscle-specific Cox15 knockout mouse (Cox15sm/sm ). Rapamycin treatment restored autophagic flux, which was impaired in naïve Cox15sm/sm muscle, and reduced the number of damaged mitochondria, which accumulated in untreated Cox15sm/sm mice. Conversely, rilmenidine, an mTORC1-independent autophagy inducer, was ineffective on the myopathic features of Cox15sm/sm animals. This stark difference supports the idea that inhibition of mTORC1 by rapamycin has a key role in the improvement of the mitochondrial function in Cox15sm/sm muscle. In contrast to rilmenidine, rapamycin treatment also activated lysosomal biogenesis in muscle. This effect was associated with increased nuclear localization of TFEB, a master regulator of lysosomal biogenesis, which is inhibited by mTORC1-dependent phosphorylation. We propose that the coordinated activation of autophagic flux and lysosomal biogenesis contribute to the effective clearance of dysfunctional mitochondria by rapamycin

    Correction to 'DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion'.

    Get PDF
    Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.publishedVersio

    Defective PITRM1 mitochondrial peptidase is associated with Aβ amyloidotic neurodegeneration.

    Get PDF
    Mitochondrial dysfunction and altered proteostasis are central features of neurodegenerative diseases. The pitrilysin metallopeptidase 1 (PITRM1) is a mitochondrial matrix enzyme, which digests oligopeptides, including the mitochondrial targeting sequences that are cleaved from proteins imported across the inner mitochondrial membrane and the mitochondrial fraction of amyloid beta (Aβ). We identified two siblings carrying a homozygous PITRM1 missense mutation (c.548G>A, p.Arg183Gln) associated with an autosomal recessive, slowly progressive syndrome characterised by mental retardation, spinocerebellar ataxia, cognitive decline and psychosis. The pathogenicity of the mutation was tested in vitro, in mutant fibroblasts and skeletal muscle, and in a yeast model. A Pitrm1(+/-) heterozygous mouse showed progressive ataxia associated with brain degenerative lesions, including accumulation of Aβ-positive amyloid deposits. Our results show that PITRM1 is responsible for significant Aβ degradation and that impairment of its activity results in Aβ accumulation, thus providing a mechanistic demonstration of the mitochondrial involvement in amyloidotic neurodegeneration.Cariplo2011‐0526 ERCFP7‐322424 Swedish Research Council Helse Vest911810 Forening for muskelsyke Italian Ministry of HealthGR‐2010‐2306‐75

    Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo.

    Get PDF
    Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy

    Get PDF
    Summary Alternative oxidases (AOXs) bypass respiratory complexes III and IV by transferring electrons from coenzyme Q directly to O2. They have therefore been proposed as a potential therapeutic tool for mitochondrial diseases. We crossed the severely myopathic skeletal muscle-specific COX15 knockout (KO) mouse with an AOX-transgenic mouse. Surprisingly, the double KO-AOX mutants had decreased lifespan and a substantial worsening of the myopathy compared with KO alone. Decreased ROS production in KO-AOX versus KO mice led to impaired AMPK/PGC-1α signaling and PAX7/MYOD-dependent muscle regeneration, blunting compensatory responses. Importantly, the antioxidant N-acetylcysteine had a similar effect, decreasing the lifespan of KO mice. Our findings have major implications for understanding pathogenic mechanisms in mitochondrial diseases and for the design of therapies, highlighting the benefits of ROS signaling and the potential hazards of antioxidant treatment.Peer reviewe

    Pneumotrabeculoplasty as treatment for primary open angle glaucoma: critical review of the literature

    No full text
    Purpose. To evaluate with criticism the available evidence shown in the literature about the efficacy of pneumotrabeculoplasty (PNT) as a treatment for primary open angle glaucoma. Materials and Methods. PNT is a recent non-surgical and noninvasive technique to safely reduce the intraocular pressure (IOP) in eyes suffering from ocular hypertension or primary open angle glaucoma. The technique consists in the application on the ocular surface of a disposable suction ring that induces a temporary trabecular meshwork stretching, increasing outflow of aqueous humor in the Schlemm’s canal. In our study, we compared the results on the efficacy and safety of this treatment published to date in the literature. Results. During follow-up, Authors have observed significant reductions in IOP in about 70% of treated eyes. The first treatment consists in 3 applications at day 0, 7 and 90, repeatable every 90 days. Immediately after suction ring application there is a significant elevation of IOP, however, of short duration and without demonstrable visual field worsening. Side effects observed are of little clinical significance and spontaneously resolving in a short time. Conclusions. The PNT is a safe and effective technique to reduce IOP in patients with ocular hypertension or open-angle glaucoma. It is repeatable, but can not replace drug treatment in patients already receiving topical therapy for glaucoma; however, it has proven effectiveness in maintaining an IOP target over time if accompanied with only a single topical drug, favoring a reduction of antiglaucoma drugs in polytherapy and increasing the compliance with treatmen

    Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy

    No full text
    Alternative oxidases (AOXs) bypass respiratory complexes III and IV by transferring electrons from coenzyme Q directly to O2. They have therefore been proposed as a potential therapeutic tool for mitochondrial diseases. We crossed the severely myopathic skeletal muscle-specific COX15 knockout (KO) mouse with an AOX-transgenic mouse. Surprisingly, the double KO-AOX mutants had decreased lifespan and a substantial worsening of the myopathy compared with KO alone. Decreased ROS production in KO-AOX versus KO mice led to impaired AMPK/PGC-1α signaling and PAX7/MYOD-dependent muscle regeneration, blunting compensatory responses. Importantly, the antioxidant N-acetylcysteine had a similar effect, decreasing the lifespan of KO mice. Our findings have major implications for understanding pathogenic mechanisms in mitochondrial diseases and for the design of therapies, highlighting the benefits of ROS signaling and the potential hazards of antioxidant treatment.This work was supported by MRC-QQR Grant 2015-2020 (M.Z.), ERC Advanced Grants ERC FP7-322424 (M.Z.) and 232738 (H.T.J.), NRJ-Institut de France (M.Z.), and Academy of Finland grants 272376 and 256615 (H.T.J.). S.A.D. was supported by an EMBO Long-Term Fellowship (ALTF 856-2014) and EU (LTFCOFUND2013, GA-2013-609409). We are grateful to the personnel at ARES and Phenomics Animal Care Facilities for the support in managing our colonies. The BF-F3, SC-71, and BA-F8 monoclonal antibodies developed by Prof. Stefano Schiaffino, University of Padova, Italy, were obtained from the Developmental Studies Hybridoma Bank; created by the NICHD of the NIH; and maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242
    corecore