1,022 research outputs found
Event-based simulation of single-photon beam splitters and Mach-Zehnder interferometers
We demonstrate that networks of locally connected processing units with a
primitive learning capability exhibit behavior that is usually only attributed
to quantum systems. We describe networks that simulate single-photon
beam-splitter and Mach-Zehnder interferometer experiments on a causal,
event-by-event basis and demonstrate that the simulation results are in
excellent agreement with quantum theory.Comment: EuroPhys. Lett. (in press); http://www.compphys.net/dl
Simulation of Quantum Computation: A deterministic event-based approach
We demonstrate that locally connected networks of machines that have
primitive learning capabilities can be used to perform a deterministic,
event-based simulation of quantum computation. We present simulation results
for basic quantum operations such as the Hadamard and the controlled-NOT gate,
and for seven-qubit quantum networks that implement Shor's numbering factoring
algorithm.Comment: J. Comp. Theor. Nanoscience (in press); http://www.compphys.net/dl
Event-by-event simulation of quantum phenomena
In this talk, I discuss recent progress in the development of simulation
algorithms that do not rely on any concept of quantum theory but are
nevertheless capable of reproducing the averages computed from quantum theory
through an event-by-event simulation. The simulation approach is illustrated by
applications to single-photon Mach-Zehnder interferometer experiments and
Einstein-Podolsky-Rosen-Bohm experiments with photons.Comment: V Brazilian Meeting on Simulational Physics, Ouro Preto, 200
Reply to Comment on "A local realist model for correlations of the singlet state"
The general conclusion of Seevinck and Larsson is that our model exploits the
so-called coincidence-time loophole and produces sinusoidal (quantum-like)
correlations but does not model the singlet state because it does not violate
the relevant Bell inequality derived by Larsson and Gill, since in order to
obtain the sinusoidal correlations the probability of coincidences in our model
goes to zero. In this reply, we refute their arguments that lead to this
conclusion and demonstrate that our model can reproduce results of photon and
ion-trap experiments with frequencies of coincidences that are not in conflict
with the observations.Comment: Corrected typo
Spin Waves in a Classical Compressible Heisenberg Chain
The effect of the spin—lattice interaction on the spin dynamics of a classical Heisenberg chain is studied by means of a truncated continued fraction. At low temperature, the spin correlation length and the spin wave frequency show the same simple dependence on the coupling.
Event-by-event simulation of experiments to create entanglement and violate Bell inequalities
We discuss a discrete-event, particle-based simulation approach which
reproduces the statistical distributions of Maxwell's theory and quantum theory
by generating detection events one-by-one. This event-based approach gives a
unified cause-and-effect description of quantum optics experiments such as
single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, quantum
eraser, double-slit, Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss
experiments, and various neutron interferometry experiments at a level of
detail which is not covered by conventional quantum theoretical descriptions.
We illustrate the approach by application to single-photon
Einstein-Podolsky-Rosen-Bohm experiments and single-neutron interferometry
experiments that violate a Bell inequality.Comment: arXiv admin note: substantial text overlap with arXiv:1208.236
Massive Parallel Quantum Computer Simulator
We describe portable software to simulate universal quantum computers on
massive parallel computers. We illustrate the use of the simulation software by
running various quantum algorithms on different computer architectures, such as
a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI
Altix 3700 and clusters of PCs running Windows XP. We study the performance of
the software by simulating quantum computers containing up to 36 qubits, using
up to 4096 processors and up to 1 TB of memory. Our results demonstrate that
the simulator exhibits nearly ideal scaling as a function of the number of
processors and suggest that the simulation software described in this paper may
also serve as benchmark for testing high-end parallel computers.Comment: To appear in Comp. Phys. Com
Efficient data processing and quantum phenomena: Single-particle systems
We study the relation between the acquisition and analysis of data and
quantum theory using a probabilistic and deterministic model for photon
polarizers. We introduce criteria for efficient processing of data and then use
these criteria to demonstrate that efficient processing of the data contained
in single events is equivalent to the observation that Malus' law holds. A
strictly deterministic process that also yields Malus' law is analyzed in
detail. We present a performance analysis of the probabilistic and
deterministic model of the photon polarizer. The latter is an adaptive
dynamical system that has primitive learning capabilities. This additional
feature has recently been shown to be sufficient to perform event-by-event
simulations of interference phenomena, without using concepts of wave
mechanics. We illustrate this by presenting results for a system of two chained
Mach-Zehnder interferometers, suggesting that systems that perform efficient
data processing and have learning capability are able to exhibit behavior that
is usually attributed to quantum systems only.Comment: http://www.compphys.net/dl
Event-by-event simulation of the Hanbury Brown-Twiss experiment with coherent light
We present a computer simulation model for the Hanbury Brown-Twiss experiment
that is entirely particle-based and reproduces the results of wave theory. The
model is solely based on experimental facts, satisfies Einstein's criterion of
local causality and does not require knowledge of the solution of a wave
equation. The simulation model is fully consistent with earlier work and
provides another demonstration that it is possible to give a particle-only
description of wave phenomena, rendering the concept of wave-particle duality
superfluous.Comment: Submitted to Commmun. Comput. Phy
- …