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The effect of the spin—Ilattice interaction on the spin dynamics of a classical Heisenberg chain is studied by means of a
truncated continued fraction. At low temperature, the spin correlation length and the spin wave frequency show the same

simple dependence on the coupling.

In ref. [1] we presented a detailed study of the
phonon dynamics in a compressible classical
Heisenberg chain (CHC). Here we will deal with the in-
fluence of the phonons on the spin dynamics.

The hamiltonian is given by [1]:

H=Hp+Hg + Hgp, (1a)
Hp= Lip}/am+}a Dy —x)? (1b)
Hg=—-J2387S;, (S=1), (1c)
Hgp = —€ 20 (X1 — X)S;*Siaq - (19)

The spins are located on a harmonic lattice and the
exchange interaction is supposed to depend linearly
on the atom—atom separation. If we define the trans-
formation

x]=u]+(€/a)§sl'sl+l s (2)

the hamiltonian decouples as follows:
H=Hy+H, Ga)
Hp=2p}am+ha 2y —u)? (3b)

Hy=—7 23 88y — (1200 2X8;°5:4 )%, (30)

1 Aspirant van het NFWO.
2 Supported by the IIKW project Neutron Scattering.

Then every static correlation function can be calculat-
ed exactly by means of the transfer operator method.
If we define new parameters

u=pJ] (B=1/kgT), 4
v=€od, )

the transfer operator [2] has eigenfunctions Y}, and
the eigenvalues are given by

1

N= [explut + 3w Pix)ax, (6)
21

where P; are the Legendre polynomials. In order to

study the time-dependent spin—spin correlation func-
tion we write its Fourier transform in the exact con-
tinued fraction expansion [3] and truncate it following
the method given in ref.-[4]. Then we need the frequency
moments

(L[5 g H] o HY,S3D)
o usTosh ’

where the number of Poisson brackets is. 2z#. These mo-
ments can be expressed in terms of the model param-
eters and the reduced eigenvalues y, = A, /A, For the
rigid Heisenberg chain (RHC), this requires already a
considerable amount of work and for the CHC the com-
putational problem is enormous. For example, the fourth
moment of the CHC is much more complex than the
sixth-moment of the RHC. Recently, we have developed
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a powerful computer program [5] which, among
other things, is able to calculate analytic expressions
for the frequency moments.

Our aim here is to present results for the dynamic
correlation functions as obtained from a three pole ap-
proximation. Truncating the continued fraction at the
corresponding level, the imaginary part of the spin re-
laxation function reads [4]

" 4y 12
—%;%i)=(<w4>q —<w2>§)( (wz)"
Wy
(wh\? (W) 2
X [wz( i q) +(w2—<w2)q)2_2q] ’
@, (@,
where

S@)=(S_q8,>=5(1~yDI(1 -2y, 005 +3}) ()

is the static structure factor. The zeroth moment or
static structure factor (9) is formally the same as for
the RHC, but y is different. The inverse correlation
length is defined by

k=—Inlyl. (10)
For low temperatures (Ju| > 1) one finds
ke [lul (L+ DL 1)

Thus, the correlation length is enhanced with a factor
(1 + |y]) by the coupling. Remark that both k and g
are measured in units of the lattice parameter. For ex-
ample, k—1 measures the number of strongly correlat-
ed spins. In order to compare the real correlation
lengths of RHC and CHC, one has to take the lattice
parameter and thus the thermal expansion into ac-
count. The second moment reads

(why, = 472(1 — cos q) [y} +57(1 +29,)]

X (1 -2y cosq +y%) [u(1 —y%)]_1 . (12)

For T =0 we find
(w2>q =4\12(1 —cosq)(1Fcosqg)(1+ |'y|)2 , (13)

where the upper sign refers to the ferromagnetic case
(/ > 0). The formula for the fourth moment would
exceed the length of this letter. It is available on re-
quest. For y = 0, we obtain the well-known results
for the second and fourth moment of the RHC [6] .
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Fig. 1. The normalized spin wave eXcitation spectrum as a
function of the coupling v at low temperature. Because the
area of each peak is the same, the line width increases as | yi
increases.

For T =0, we have

(wh)y =¢w®)? .

(14)

Consequently, at T = 0 the spin system oscillates har-
monically. Its dispersion is then given by

Q(g) = 21711 + 171) [(1 — cos g)(1 F cos g)] 1/2,(15)

with the same sign convention as in eq. (13).

In fig. 1 we see how at low temperatures the spin—
phonon coupling results in a renormalised dispersion.
As vy increases, the height of the peak decreases and
consequently the lines become broader. This, however,
is difficult to see in the figures. In principle there is also
a dependence on a third parameter § defined by [1]

8§ =J/2(2a/m)1/? . (16)

This dependence is found to be minor for low tempera-
tures and therefore it has been omitted in the figures.

For the RHC and low temperatures, the three pole
approximation for the s;in correlation function leads
to the criterion ¢ > k /2 for the observability of the
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Fig. 2. For small wave vectors, the excitations in the RHC are
overdamped because the correlation length is small. The cor-
relation length increases with |y| and consequently propagating
modes are present in the CHC for large coupling {vy|.

spin waves. Here, this criterion is still reasonably satis-
fied for the antiferromagnet. For the ferromagnet,
however, it does not seem to apply anymore. By eq.
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(11), it is then possible to find a propagating mode in
the antiferromagnet where the RHC only displays re-
laxational behavior. In fig. 2 we show that this is indeed
the case. Finally, we remark that the relaxation functions
for ferro- and antiferromagnet do not coincide at ¢

= /2, while they do in the RHC.

To discuss the temperature dependence of line width
or the criterion for the occurrence of spin waves, at
least a four pole approximation is required [4] . Then
we need the sixth moment. Because of the complexity
of the calculation, it takes a considerable amount of
computer time and therefore we are not yet in the pos-
session of the complete result. However, we will present
an extensive study of the four pole approximation in
the near future.
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