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Simulation of Quantum Computation:
A Deterministic Event-Based Approach
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We demonstrate that locally connected networks of machines that have primitive learning capabilities
can be used to perform a deterministic, event-based simulation of quantum computation. We present
simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate,
and for seven-qubit quantum networks that implement Shor’s numbering factoring algorithm.

Keywords: Quantum Computation, Computer Simulation, Machine Learning, Quantum Theory.

1. INTRODUCTION

Recent advances in nanotechnology are paving the way to
attain control over individual microscopic objects.1–5 The
ability to prepare, manipulate, couple and measure single
quantum systems is essential for quantum computation.6

Candidate systems to implement a quantum computer are
ions or atoms in electromagnetic or optical traps, photons
in cavities, nuclear spins on molecules, quantum dots and
superconductors. These technological developments facil-
itate the study of single quantum systems at the level of
individual events. Such experiments address the most fun-
damental aspects of quantum theory. Indeed, quantum the-
ory gives us only a recipe to compute the frequencies for
observing events. It does not describe individual events,
such as the arrival of a single electron at a particular posi-
tion on the detection screen.7–10 Reconciling the mathe-
matical formalism (that does not describe single events)
with the experimental fact that each observation yields a
definite outcome is often referred to as the quantum mea-
surement paradox. This is the fundamental problem in the
foundation of quantum theory.7�8�11

In view of this, it is not a surprise that some of the
most fundamental experiments in quantum physics have
not been simulated in the event-by-event manner in which
the experimental observations are actually recorded.12

∗Author to whom correspondence should be addressed.

One of the examples are the two-slit experiments in
which the individual electron counts build up the interfer-
ence pattern.9 Other examples are the single-photon beam
splitter and Mach-Zehnder interferometer experiments.13

Within the standard formalism of quantum theory, no algo-
rithm has been found to perform an event-based simulation
of definite individual outcomes in quantum experiments.8

In this paper, we take the point of view that a physical
theory such as quantum theory, is a specification of an
algorithm to compute numbers that can be compared
to experimental data.14 Thinking in terms of algorithms
opens new possibilities to simulate phenomena for which a
proper physical theory is not (yet) available. As discussed
before, quantum theory is unable to describe individual
events in an experiment but it provides an algorithm to
compute the final, collective outcome. We have already
demonstrated that it is possible to construct deterministic
processes that generate events at a rate that agrees with
the quantum mechanical probability distribution, without
using quantum theory.15 In this paper we apply these con-
cepts to quantum computation. We present results of event-
based simulations of single-qubit quantum interference
(Mach-Zehnder interferometer), a two-qubit quantum cir-
cuit (controlled-NOT gate), and Shor’s algorithm16 to fac-
torize N = 15 on a seven qubit quantum computer.

The event-based simulation method that we describe
in this paper is not a proposal for another interpretation
of quantum mechanics. To avoid misunderstandings, we
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emphasize that our approach is not an extension of quan-
tum theory. We simulate quantum systems without mak-
ing use of the rules (algorithms) quantum theory provides.
However, the final, collective results of our event-by-
event deterministic, causal learning processes are in perfect
agreement with the probability distributions of quantum
theory.11 The event-based simulations build up the final
outcome event-by-event, just like in real experiments. In
physics terminology, the entire approach is particle-like
and satisfies Einstein’s criteria of realism and causality.8

In this sense, our approach can be viewed as a recipe to
construct event-based systems, that is “classical” models,
that behave as if they were “quantum mechanical.”

The paper is organized as follows. In Section 2 we
briefly recall some basic elements of quantum computa-
tion. We describe the Hadamard, controlled-NOT (CNOT)
and Toffoli gate, involving one, two or three qubits, repec-
tively. We discuss the quantum network for the Mach-
Zehnder interferometer and for Shor’s quantum algorithm
to factorize N = 15 on a seven-qubit quantum computer.

In Section 3 we introduce the deterministic learning
machine (DLM) that is at the core of the event-based sim-
ulation approach. We present a mathematical analysis that
proves that these machines generate events at a rate that
agrees with the corresponding quantum mechanical prob-
abilities. One of the essential features of (networks of)
DLMs is that they process one event at a time. After apply-
ing a deterministic decision process to the input event and
sending out an output event, a new input event can be pro-
cessed. Another essential feature of DLMs is that they do
not store information about individual events. Networks
of DLMs are capable of unsupervised learning15 but they
have very little in common with neural networks.17 The
sequence of events that is generated by a DLM is stricly
deterministic. This is modified in the stochastic learning
machine (SLM). The event-by-event learning processes in
a SLM are still deterministic and causal but the output
events are randomly distributed. This modification is nec-
essary if we want to mimic the apparent random order in
which quantum events are detected in experiments.9�13

In Section 4 we first describe the construction of
DLM networks and present results from the event-based
simulation of the Hadamard gate and the Mach-Zehnder
interferometer, the latter showing that DLM-based net-
works correctly reproduce quantum interference phenom-
ena. Then we describe how to simulate a CNOT gate using
DLM and SLM networks. Finally, we present the simula-
tion results of Shor’s number factoring algorithm16 imple-
mented on DLM and SLM networks. A summary and
outlook is given in Section 5.

2. QUANTUM COMPUTATION

This section summarizes those aspects of quantum com-
putation that are necessary to understand the examples of
quantum algorithms that we use in Section 4 to demonstrate

that local, causal and deterministic processes can simulate
quantum computers on an event-by-event basis.

2.1. Preliminaries

The state of an elementary storage unit of a quantum com-
puter, the quantum bit or qubit, is described by a two-
dimensional vector of Euclidean length one. Denoting two
orthogonal basis vectors of the two-dimensional vector
space by �0� and �1�, the state ��� of the qubit can be
written as a linear superposition of the basis states �0�
and �1�:

��� = a0�0�+a1�1� (1)

where a0 and a1 are complex numbers such that �a0�2 +
�a1�2 = 1. The appearance of complex numbers suggests
that one qubit can contain an infinite amount of infor-
mation. However, it is impossible to retrieve all this
information.10�18�19 The result of inquiring about the state
of the qubit, that is the outcome of a measurement, is either
0 or 1. The frequency of obtaining 0 (1) can be estimated
by repeated measurement of the same state of the qubits
and is given by �a0�2 (�a1�2).10�18�19

According to quantum theory,20 the internal state of
a quantum computer with L qubits is described by a
unit vector (state vector) in a D = 2L dimensional space
(of complex numbers).6 Adopting the convention of quan-
tum computation literature,6 the state of an L-qubit quan-
tum computer is represented by

��� = a�0 � � �00	�0 � � �00�+a�0 � � �01	�0 � � �01�
+ · · ·+a�1 � � �10	�1 � � �10�+a�1 � � �11	�1 � � �11�

= a0�0�+a1�1�+ · · ·+a2L−2�2L−2�+a2L−1�2L−1�
(2)

where in the last line of Eq. (2), the binary representation
of the integers 0� � � � �2L−1 was used to denote �0� ≡ �0 � � �
00�� � � � � �2L − 1� ≡ �1 � � �11� and a0 ≡ a�0 � � �00	� � � � �
a2L−1 ≡ a�1 � � �11	. As usual, we normalize the state vec-
tor, that is 	���� = 1, by rescaling the complex-valued
amplitudes ai according to

2L−1∑
i=0

�ai�2 = 1 (3)

The internal state of the quantum computer evolves in
time according to a sequence of unitary transformations.6

A quantum algorithm is a sequence of such unitary oper-
ations. Of course, not every sequence corresponds to a
meaningful computation. Furthermore, if a quantum algo-
rithm cannot exploit the fact that the intermediate state of
the quantum computer is described by a linear superposi-
tion of basis vectors, it will not be faster than its classical
counterpart. As the unitary transformation may change all
amplitudes simultaneously, a quantum computer is a mas-
sively parallel machine,6 at least in theory.

It has been shown that an arbitrary unitary operation can
be written as a sequence of single qubit operations and
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the CNOT operation on two qubits.6�21 Therefore, single-
qubit operations and the CNOT operation are sufficient to
construct a universal quantum computer.6 The final state
of the quantum computer can be calculated by perform-
ing the (unitary) matrix-vector multiplications that corre-
spond to the application of this sequence (determined by
the quantum algorithm) of single-qubit and CNOT oper-
ations. According to quantum theory, the squares of the
absolute values of the elements of the state vector are the
probabilities for observing the quantum computer in one
of its 2L states.

The unitary time evolution of the internal state of the
quantum computer is interrupted at the point where we
inquire about the value of the qubits, that is as soon as
we perform a measurement on the qubits. If we perform
the readout operation on a qubit, we get a definite answer,
either 0 or 1, and the information encoded in the super-
position is lost. The process of measurement cannot be
described by a unitary transformation.8�10 Therefore, we
do not consider it to be part of a quantum algorithm.

2.2. Single-Qubit Operations

In general, a qubit can be represented by a spin-1/2 sys-
tem. The state ��� of a qubit (see Eq. (1)) can therefore
also be written as a linear combination of the spin-up and
spin-down states:10�18�19

��� = a0�↑�+a1�↓� (4)

where6

�0� = �↑� =
(

1

0

)
� �1� = �↓� =

(
0

1

)
(5)

The three components of the spin-1/2 operator S =
�Sx� Sy� Sz	 are defined (in units such that � = 1) by10�18�19

Sx= 1
2

(
0 1

1 0

)
� Sy= 1

2

(
0 −i
i 0

)
� Sz= 1

2

(
1 0

0 −1

)

(6)

and are chosen such that �↑� and �↓� are eigenstates of Sz

with eigenvalues +1/2 and −1/2, respectively.
The expectation values of the three components of the

qubits are defined as

	Q�� = 1/2−	S��� �= x� y� z (7)

where 	A� = 	��A���/	����. A qubit is in the state �0�
or �1� if 	Qz� = 0 or 	Qz� = 1, respectively.

A rotation of the state Eq. (4) about a vector v corre-
sponds to the unitary matrix

eiv·S = � cos
v

2
+ 2iv ·S

v
sin

v

2
(8)

where � denotes the unit matrix and v =
√
v2
x+v2

y +v2
z is

the length of the vector v.

For later reference, it is useful to list a few special cases
of Eq. (8). The Hadamard operation H and rotations X
and Y of the state vector by �/2 about the x and y-axis,
respectively, are defined by6

H ≡ 1√
2

(
1 1

1 −1

)
� X ≡ ei�S

x/2 = 1√
2

(
1 i

i 1

)
�

Y ≡ ei�S
y/2 = 1√

2

(
1 1

−1 1

)
(9)

We also introduce the symbol

R��	= ei�/2e−i�S
z =

(
1 0

0 ei�

)
(10)

to represent the single-qubit phase-shift operation by a
phase �. The graphical symbols of H , X, Y , and R��	 are
shown in Figure 1. The inverse of a unitary operation U
is denoted by U .

The Mach-Zehnder interferometer is a simple but non-
trivial example of a single-qubit system in which the infor-
mation contained in the phase of the wave function is
essential.6�13�22�23 The schematic layout of the apparatus is
shown in Figure 2. N photons enter the first beam splitter
through the input channels 0 or 1. The beam splitter dis-
tributes the photons over its two output channels (0 or 1):
The number of photons in these channels is N0 and N1,
respectively. If there are no photons in one of the input
channels, the beam splitter equally divides the photons
over its output channels, that is N0 = N1 = N/2. The pho-
tons then propagate and experience a phase shift of � if
they left the beam splitter via channel 1. The photons are
collected at another beam splitter. Finally, detectors count
the number of photons in the two output channels 0 and
1 of the second beam splitter. The number of photons in
these channels is denoted by N2 and N3, respectively. We
assume that no photons are lost in this process so that
N = N0 +N1 = N2 +N3.

X

a

H Y

c

k

e g

d

R(φ)

b

f

Fig. 1. Graphical representation of some of the basic gates used in
quantum computation; (a) Hadamard gate; (b) Rotation by �/2 about the
x-axis; (c) Rotation by �/2 about the y-axis; (d) Single qubit phase shift
by �; (e) CNOT gate; (f) Controlled phase shift by �= �/k; (g) Toffoli
gate. The horizontal lines denote the qubits involved in the quantum
operations. The dots and crosses denote the control and target qubits,
respectively.
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0 0

1

0

1

N0

N1

N2

N3

1

N0

N1

N2

N3

X R(φ) X

(a)

(b)

φ

Fig. 2. (a) Diagram of the Mach-Zehnder interferometer, consisting of
two beam splitters, two mirrors, and a device that changes the phase of
the light wave by �. (b) Diagram of the equivalent quantum network.

The relation between input and output amplitudes of the
Mach-Zehnder interferometer is given by6�13�22�23

(
b0

b1

)
= XR��	X

(
a0

a1

)

= 1
2

(
1 i

i 1

)(
1 0

0 ei�

)(
1 i

i 1

)(
a0

a1

)
(11)

where (a0� a1	 and (b0� b1	 are the complex-valued ampli-
tudes at the input and output, respectively. The X oper-
ations represent the beam splitters while the phase shift
R��	 mimics the effect of changing the optical path length.

Let us consider the case where all the photons enter the
interferometer through channel 0. Assuming that the pho-
tons originate from a coherent source, we have �a0� a1	=
�cos�0 + i sin�0�0	. From Eq. (11) it follows that the
probabilities for observing a photon at one of the output
channels is given by

�b0�2 = sin2 �

2
� �b1�2 = cos2 �

2
(12)

2.3. Two Qubits: CNOT Operation and
Controlled Phase Shift

Computation requires some form of communication
between the qubits. It has been shown that any form of
communication between qubits can be reduced to a com-
bination of single-qubit operations and the CNOT opera-
tion on two qubits.6�21 By defintion, the CNOT gate flips
the target qubit if the control qubit is in the state �1�. 6

If we take the first qubit (that is the least significant bit

H

H

H

H

Fig. 3. Quantum circuit representation of a CNOT gate where the sec-
ond (bottom) qubit acts as control qubit and the first (top) qubit is the
target qubit.

in the binary notation of an integer) as the control qubit,
we have

CNOT21��� = CNOT21�a0�00�+a1�01�+a2�10�+a3�11�	
= a0�00�+a3�01�+a2�10�+a1�11�
= a0�0�+a3�1�+a2�2�+a1�3�
= a0�0�1�0�2+a3�1�1�0�2+a2�0�1�1�2

+a1�1�1�1�2 (13)

where a0� � � � � a3 are the probability amplitudes of the four
different states and �0�i and �1�i represent the �0� and �1�
state of the i-th qubit, respectively. The graphical symbol
of the CNOT operation is shown in Figure 1e. The dot
(cross) denotes the control (target) qubit. A CNOT gate in
which the control and target qubit are interchanged can be
built from four Hadamard gates and one CNOT gate.6 The
quantum circuit for this “reversed” CNOT gate is shown
in Figure 3.

The CNOT operation is a special case of the controlled
phase shift operation Rji��	. The controlled phase shift
operation with control qubit 1 and target qubit 2 reads

R21��	��� = R21��	�a0�00�+a1�01�+a2�10�+a3�11�	�

= a0�00�+ �1+ ei�	a1 + �1− ei�	a3

2
�01�

+a2�10�+ �1− ei�	a1 + �1+ ei�	a3

2
�11�

(14)

Graphically, the controlled phase shift Rji�� = �/k	 is
represented by a vertical line connecting a dot (control
bit) and a box denoting a single qubit phase shift by �/k
(see Fig. 1f).

2.4. Three Qubits: Toffoli Gate

The Toffoli gate is a generalization of the CNOT gate in
the sense that it has two control qubits and one target
qubit.6�24 The target qubit flips if and only if the two con-
trol qubits are set. Symbolically the Toffoli gate is repre-
sented by a vertical line connecting two dots (control bits)
and one cross (target bit), as shown in Figure 1g.

230 J. Comput. Theor. Nanosci. 2, 227–239, 2005
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2.5. Seven Qubits: Factoring N = 15 Using
Shor’s Algorithm

We now consider the problem of factoring integers. For
the case N = 15, an experimental realization of this quan-
tum algorithm on a seven-qubit NMR quantum computer is
described in Ref. [ 25, 26]. The theory behind Shor’s algo-
rithm has been discussed at great length elsewhere.6�16�27

Therefore, we only recall the basic elements of Shor’s
algorithm and focus on the implementation of the algo-
rithm for the case N = 15. The theory in this section
closely follows Ref. [ 25].

Shor’s algorithm is based on the fact that the factors p
and q of an integer N =pq can be deduced from the period
M of the function f �j	 = aj modN for j = 0� � � � �2n− 1
where N ≤ 2n. Here a < N is a random number that has
no common factors with N . Once M has been determined,
at least one factor of N can be found by computing the
greatest common divisor (g.c.d.) of N and aM/2 ±1.

For N = 15, the calculation of the modular exponen-
tiation aj modN is almost trivial. Using the binary rep-
resentation of j we can write aj modN = a2n−1jn−1 � � �
a2j1aj0 modN = �a2n−1jn−1 modN	 � � � �a2j1 modN	�aj0 mod
N	modN , showing that we only need to implement
�a2kjk modN	. For N = 15 the allowed values for a are
a = 2�4�7�8�11�13�14. If we pick a = 2�7�8�13 then
a2k modN = 1 for all k > 1. For the remaining cases we
have a2k modN = 1 for all k > 0. Thus, for N = 15 only
two (not four) qubits are sufficient to obtain the period of
f �j	= aj modN . 25 As a matter of fact, this analysis pro-
vides enough information to deduce the factors of N = 15
using Shor’s procedure so that no further computation is
necessary. Nontrivial quantum operations are required if
we decide to use three (or more) qubits to determine the
period of f �j	= aj modN . 25 Following Ref. [ 25], we will
consider a seven-qubit quantum computer with four qubits
to hold f �j	 and three qubits to perform the Fourier trans-
form to determine the period M .

The quantum circuit that implements Shor’s algorithm
that factors N = 15 using a = 7 and a = 11 is depicted
in Figure 4.25 Qubits 1 to 3 and 4 to 7 are used as reg-
isters to represent j and f �j	 = aj modN , respectively.
Here, qubits 3 and 7 are the least significant qubits of these
two registers. The initial state of the qubits is �0�0�0�
0�0�0�1	, that is, all qubits are prepared in the state �0�
except for qubit 7 which is prepared in the state �1�.

The quantum networks to compute aj mod 15 for j =
0� � � � �7 and a fixed input a are easy to construct. Exam-
ples for a = 7 (six CNOT and two Toffoli gates) and
a= 11 (two CNOT gates) are included in Figure 4.25 For
example, consider the case a = 11 = �1011�. If j is odd
then 11j mod 15 = 11 and the network should leave �1011�
unchanged. Otherwise, 11j mod 15 = 1 and hence it should
return �0001�. The network for this operation consists of
two CNOT gates that have as control qubit, the same least-
significant qubit (qubit 3 in Fig. 4) of the three qubits

H

H

H

5

1

2

3

4

6

7

H

2 H

H4 2

Fig. 4. Quantum network for Shor’s quantum algorithm to find the fac-
tors of the number N = 15 for the case a= 11 (black colored CNOT gates
only) and a= 7 (gray colored CNOT and Toffoli gates only).25 H denotes
the Walsh-Hadamard transform. The operations in the dashed box perform
a 3-qubit Fourier transform.6 The operations “2” and “4” perform con-
trolled phase shifts with angles �/2 and �/4, respectively. The other gates
perform two-qubit (CNOT) or three-qubit (Toffoli) operations. The initial
state of the seven qubits of the quantum computer is �0�0�0�0�0�0�1	.

that are input to the Fourier transform. The sequence of
CNOT and Toffoli gates that performs similar operations
for the other cases can be found in the same manner. In
the NMR implementation, additional simplications of the
a = 7 circuit where necessary to render the experiment
feasible.25 There is no need to do this here, so we use the
circuits as shown in Figure 4. Elsewhere, we describe a
quantum computer emulator (QCE) that simulates models
of ideal and physically realizable quantum computers.28–30

The software distribution of QCE31 contains an implemen-
tion of the circuits shown in Figure 4, demonstrating that
these circuits work correctly.

For the quantum network of Figure 4, we can determine
the period M of the function f �j	 = aj modN from the
expectation values of the first three qubits. The state of the
quantum computer before it starts performing the Fourier
transform can be written as

1√
N

N−1∑
j=0

�j��f �j	�

= 1√
N

{
M−1∑
j=0

�j��f �j	�+
2M−1∑
j=M

�j��f �j	�+ · · ·
}

= 1√
N

M−1∑
j=0

��j�+ �j+M�+ · · · 	�f �j	� (15)

where, in the last step, we used the periodicity of f �j	.
Using the Fourier representation of �j� we obtain

1√
N

N−1∑
j=0

�j��f �j	�

= 1
N

N−1∑
k=0

M−1∑
j=0

e2�ikj/N
(
1+ e2�ikM/N + e4�ikM/N

+· · ·+ e2�ikM�L−1	/N
)�k��f �j	�

+ 1
N

N−1∑
k=0

L−1∑
j=0

e2�ikj/N e2�ikML/N �k��f �j	� (16)
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Table I. Probability pq�M	 to observe the state �q� after perform-
ing the quantum Fourier transform on the periodic function f �j	=
f �j+M	 for j = 0� � � � �7.

q pq�M = 1	 pq�M = 2	 pq�M = 3	 pq�M = 4	

0 1 0.5 0.34375 0.25
1 0 0.0 0.01451 0.00
2 0 0.0 0.06250 0.25
3 0 0.0 0.23549 0.00
4 0 0.5 0.31250 0.25
5 0 0.0 0.23549 0.00
6 0 0.0 0.06250 0.25
7 0 0.0 0.01451 0.00

where L= �N/M� denotes the largest integer L such that
ML ≤ N . In simple terms, L is the number of times the
period M fits into the interval '0�N −1(. The probability
pq�M	 to observe the quantum computer in the state �q� is
given by the expectation value of the (projection) operator
Q= �q�	q�. With the restriction on f �j	 that f �j	= f �j ′	
implies j = j ′, we find

	Q� = pq�M	 = M

N 2

(
sin��qML/N	

sin��qM/N	

)2

+ N −ML

N 2

sin��qM�2L+1	/N	
sin��qM/N	

(17)

The results for pq�M	 in the case N = 8 (three qubits)
are given in Table I. From Table I it follows directly that
the expectation values of the qubits are (	Qz

1� = 	Qz
2� =

	Qz
3� = 0) if the period M = 1, (	Qz

1� = 	Qz
2� = 0, 	Qz

3� =
0�5) if the period M = 2, (	Qz

1� = 0�5, 	Qz
2� = 0�375,

	Qz
3� = 0�34375) if the period M = 3, and (	Qz

1� = 0,
	Qz

2� = 	Qz
3� = 0�5) if the period M = 4.

Thus, in this simple case of N = 15, the periodicity of
f �j	 can be unambiguously determined from the expec-
tation values of the individual qubits. For a = 7 we find
(	Qz

1� = 0, 	Qz
2� = 0�5, 	Qz

3� = 0�5) and hence the period
M = 4, yielding the correct factors g.c.d.�72 ±1�15	= 3�5
of N = 15. Similarly, for a= 11 we find (	Qz

1� = 0, 	Qz
2� =

0, 	Qz
3� = 0�5) corresponding to the period M = 2 and the

factors g.c.d.�11±1�15	= 3�5.

3. EVENT-BASED SIMULATION OF
QUANTUM PHENOMENA

The conventional approach for simulating quantum sys-
tems (and quantum computers in particular) is to solve the
time-dependent Schrödinger equation of the correspond-
ing system.32 In practice, this amounts to multiplying the
state vector by a sequence of (many) unitary matrices.28–30

According to quantum theory, the squares of the ampli-
tudes of the final state of the quantum computer yield the
probabilities for observing the quantum computer in a par-
ticular basis state. Once these probabilities are known, it is
trivial to construct a random process that generates events
according to these probabilities.

The approach we propose in this paper is radically
different. We construct processes that generate events of
which the ratio of occurrence agrees with quantum the-
ory. Thus, adopting this method, we don’t use concepts
of quantum theory at all: we don’t use wave functions or
the Schrödinger equation and do not run into the funda-
mental measurement paradox.8 In our approach, quantum
mechanical behavior is the result of a causal, deterministic
(or stochastic), event-based process.

In quantum physics an event corresponds to the detec-
tion of a photon, electron, etc. In our simulation approach
an event is very much the same thing: It is the arrival of a
message at the input port of a processing unit. In this paper
we only consider networks of processing units in which
only one message is traveling through the network at any
time. Thus, the network receives an event at one of its
inputs, processes the event and delivers the processed mes-
sage through one of its output channels. After delivering
this message the network can accept a new input event.

The key feature of our approach is a processing unit that
we call deterministic learning machine (DLM). A DLM is
a machine with an internal state that is updated accord-
ing to a very simple, deterministic algorithm. A DLM
responds to the input event by choosing from all possi-
ble alternatives, the internal state that minimizes the error
between the input and the internal state itself. This deter-
ministic decision process determines which type of event
will be generated as output by the DLM. Furthermore, the
same process generates different events in such a way that
the number of each type of event is proportional to the cor-
responding probabilities of the quantum mechanical device
that we want to simulate. The message contains informa-
tion about the decision the DLM took while updating its
internal state and, depending on the application, also con-
tains other data that the DLM can provide. By updating
its internal state, the DLM “learns” about the input events
it receives and by generating new events carrying mes-
sages, it tells its environment about what it has learned.
This primitive learning capability is the essence of our
approach.

3.1. Deterministic Learning Machines

An extensive discussion of the internal operation and
dynamic behavior of a DLM can be found in Refs. [ 15, 33].
Therefore, in this paper, we briefly recall the basic ideas.
As an example, we take a DLM that we use to simulate
the Hadamard operation (see Section 2). We first consider
a DLM that accepts as input two different types of events
(0 or 1), each event carrying a message consisting of two
real numbers. The DLM learns from the input event by
updating its internal vector. The internal state of the DLM
is represented by a unit vector of four real numbers x =
�x0� x1� x2� x3	. The first (last) two elements of x are used
to learn about the message carried by 0 (1) events. As an
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input event is either of type 0 or 1, the DLM receives a
message with two real numbers, not with four. Therefore,
the DLM uses its internal vector to supply the two missing
real numbers. Thus, for a 0 event carrying the message
y0 = �y0� y1	, the input vector is v = �y0� y1� x2� x3	 and
for a 1 event carrying the message y1 = �y2� y3	, the input
vector is v= �x0� x1� y2� y3	. Consider now the second pos-
sibility in which the DLM receives input in the form of
four real numbers v= �v0� v1� v2� v3	. Then, it is clear that
it can skip the step of supplying the missing information
and use the input v directly.

The DLM updates its internal vector by selecting from
the eight candidate update rules )j = 0�1�2�3* sj =±1,

wi� j = sj

√
1+�2�x2

j −1	.i� j +�xi�1−.i� j 	 (18)

the update rule that minimizes the cost

C =−wT
j v (19)

Note that xT x = 1 implies wT
j wj = 1 for each of the 8

update rules. The parameter 0 < � < 1 controls the learn-
ing process. If j ′ and s′ denote the values of j and sj that
minimizes the cost Eq. (19), the final step of the DLM
algorithm is to set x = wj ′ .

In general, the behavior of the DLM defined by rules
Eqs. (18) and (19) is difficult to analyze without the use
of a computer. However, for fixed input messages y0 =
�y0� y1	 and y1 = �y2� y3	 for the 0 and 1 event respectively,
it is clear what the DLM will try to do: It will minimize
the cost Eq. (19) by rotating its internal vector x to bring it
as close as possible to y= �y0� y1� y2� y3	. After a number
of events (depending on the initial value of x, the input y,
and �), x will be close to y. However, the vector x does
not converge to a limiting value because the DLM always
changes its internal vector by a non-zero amount. It is not
difficult to see (and supported by simulations, results not
shown) that once x is close to y, it will keep oscillating
about y= �y0� y1� y2� y3	.

Let us denote by n0 the number of times the DLM
selects update rule j = 0 (see Eq. (18)). Writing w2

0�0 =
�x0+.	2 = 1−�2+�2x2

0 and assuming that 0��< 1, we
find that the variable x0 changes by an amount . ≈ �1−
�2	�1−x2

0	/2x0 (neglecting terms of order .2). If n is the
total number of events then n−n0 is the number of times
the DLM selects update rules j = 1�2�3. For j = 1�2�3
we have w2

0�j = �x0 +.′	2 = �2x2
0 and hence x0 changes by

.′ ≈ −�1−�2	x0/2. If x oscillates about y then x0 also
oscillates about y0. This implies that the number of times
x0 increases times the increment must approximately be
equal to the number of times x0 decreases times the decre-
ment. In other words, we must have n0.+ �n−n0	.

′ ≈ 0.
As x0 ≈ y0 we conclude that n0/n≈ y2

0 . Applying the same
reasoning for the cases where the DLM selects update rule
j = 1 shows that the number of times the DLM will apply
update rules j = 0�1 is proportional to y2

0 +y2
1 . Therefore,

the rate with which the DLM selects update rules j = 0�1
corresponds to the probability for observing a 0 event in
the quantum mechanical system. In other words, the DLM
generates 0 (1) events in a deterministic manner, with a
rate that is proportional to the probability p0 (p1 = 1−p0)
for observing a 0 (1) event in the corresponding quantum
mechanical system. Thus, a DLM is a simple “classical”
dynamical system that exhibits behavior that is usually
attributed to quantum systems.

3.2. Stochastic Learning Machines

The sequence of events that is generated by a DLM (net-
work) is strictly deterministic. We now describe a simple
modification that turns a DLM into a stochastic learning
machine (SLM). The term stochastic does not refer to the
learning process but to the method that is used to select
the output channel that carries the outgoing message.

In the stationary regime, the components of the internal
vector represent the probability amplitudes. Comparing the
(sums of) squares of these amplitudes with a uniform ran-
dom number 0 < r < 1 gives the probability for sending
the message over the corresponding output channel. For
instance, in the case of the Hadamard gate (see Fig. 5)
we replace DLM 2 by a SLM. This SLM generates a 0
event if x2

0 +x2
1 ≤ r and a 1 event otherwise. Although the

learning process of this processor is still deterministic, in
the stationary regime the output events are randomly dis-
tributed over the two possibilities. Of course, the rate at
which different output events are generated is the same
as that of the original DLM-network. Replacing DLMs by
SLMs in a DLM-network changes the order in which mes-
sages are being processed by the network but leaves the
content of the messages intact. Therefore, in the station-
ary regime, the distribution of messages over the outputs
of the SLM-network is essentially the same as that of the
original DLM network.

4. EVENT-BASED SIMULATION OF
QUANTUM COMPUTERS

4.1. Hadamard Operation34

As an example of a DLM-based processor that performs
single-qubit operations we consider the diagram shown in
Figure 5 (left). The presence of a message is indicated by
an arrow on the corresponding line. The first component,
called front-end, consists of a DLM that “learns” about
the occurrence of 0 and 1 events, meaning that the corre-
sponding qubit is 0 or 1, respectively. The second compo-
nent transforms the data stored in the front-end and feeds
this data into a second DLM called back-end. The back-
end “learns” this data. The learning process itself is used
to determine whether the back-end responds to the input
event by sending out either a 0 or a 1 event. None of these
components makes use of random numbers.
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Fig. 5. Left: Diagram of the network of two DLMs that performs a
deterministic simulation of a Hadamard gate on an event-by-event basis.
The arrows on the solid lines represent the input and output events.
Dashed lines indicate the flow of data within the DLM-based proces-
sor. Right: Simulation results for the Hadamard gate shown on the left.
The input events are either of type 0 with message �cos�0� sin�0	 or of
type 1 with message �cos�1� sin�1	. A uniform random number is used
to generate the type of input events. The probability for a 0 (1) event
is p0 (p1 = 1− p0). Each data point represents a simulation of 10000
events. After each set of 10000 events, a uniform random number in
the range '0�360( is used to choose the angles �0 and �1. Markers give
the simulation results for the normalized intensity in output channel 0
as a function of � = �0 −�1. Open circles: p0 = 1; Bullets: p0 = 0�5;
Open squares: p0 = 0�25. Lines represent the results of quantum theory
(see Eq. (23)).

An event corresponds to the arrival of a particle in either
the 0 or 1 state. The message is a unit vector y = �y0� y1	
of two real numbers. We denote the number of 0 (1) events
by N0 (N1) and the total number of events by N =N0+N1.
The correspondence with the quantum system is rather
obvious: the probability for a 0 event is given by �a0�2 ≈
N0/N and y0 = Re a0/�a0� and y1 = Im a0/�a0�. The prob-
ability for a 1 event is N1/N ≈ �a1�2 and y2 = Re a1/�a1�
and y3 = Im a1/�a1�.

From Figure 5 (left) it is clear that the transformation is
just the real-valued version of the complex-valued matrix-
vector operation that corresponds to the Hadamard gate
(see Eq. (9)). A processor that performs the general single-
qubit operation Eq. (8) is identical to the one shown in
Figure 5 (left) except for the transformation stage. For
instance, to implement the X operation (see Eq. (9)) we
only have to replace the transformation matrix of the

Hadamard operation

1√
2




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1


⇐⇒H (20)

by

1√
2




1 0 0 −1

0 1 1 0

0 −1 1 0

1 0 0 1


⇐⇒ X (21)

In Figure 5 (right) we present results of simulations
using the processor depicted in Figure 5 (left). Before the
first simulation starts we use uniform random numbers
to initialize the two four-dimensional internal vectors of
DLM 1 and DLM 2. Each data point in Figure 5 (right)
represents a simulation of 10000 events. All these simu-
lations were carried out with � = 0�99. For each set of
10000 events, two uniform random numbers in the range
'0�360( determine two angles �0 and �1 that are used as
the message y0 = �cos�0� sin�0	 (y1 = �cos�1� sin�1	) for
the input event of type 0 (1). Uniform random numbers
are used to generate 0 (1) input events with probability
p0 (p1 = 1−p0). This corresponds to the input amplitudes
a0 =√

p0e
i�0 and a1 = p1e

i�1 in the quantum mechanical
system.

According to quantum theory, the probability amplitude
b0 (b1) for the 0 (1) output event is given by(

b0

b1

)
= 1√

2

(
a0 +a1

a1 −a0

)
= 1√

2

(
1 1

1 −1

)(
a0

a1

)
(22)

As the DLM-based Hadamard gate generates N0/N events
of type 0 and N1/N events of type 1, it is obvious from
Figure 5 (right) that these ratios are in excellent agreement
with the probabilities

�b0�2 = 1+2
√
p0�1−p0	 cos��0 −�1	

2

�b1�2 = 1−2
√
p0�1−p0	 cos��0 −�1	

2

(23)

as obtained from Eq. (22).

4.2. Mach-Zehnder Interferometer34

As a second example of event-based simulation of single-
qubit operations we consider the Mach-Zehnder interfer-
ometer network shown in Figure 2. We use the equivalent
DLM-based processor for the X operation. The phase-shift
operation R��	 is carried out by a passive device (that is,
a device without DLMs) that simply passes messages of
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Fig. 6. Simulation results for the DLM-implementation of the network
shown in Figure 2. The input are 0 events with message �cos�0� sin�0	.
A uniform random number in the range '0�360( is used to choose the
angle �0. Each data point represents 10000 events (N0 +N1 = N2 +N3 =
10000). Initially the rotation angle � = 0 and after each set of 10000
events, � is increased by 10�. Markers give the simulation results for the
normalized intensities as a function of �. Open squares: N0/�N0 +N1	

(0 events); Solid squares: N2/�N2 +N3	 (0 events); Bullets: N3/�N2 +N3	

(1 events). Lines represent the results of quantum theory.

0 events and transforms messages of 1 events by perform-
ing a plane rotation about � of the two-dimensional vector
representing the message. Thus, R��	 transforms the mes-
sage y= �y0� y1	 carried by a 1 event according to(

y0

y1

)
←− 1√

2

(
cos� − sin�

sin� cos�

)(
y0

y1

)
(24)

In Figure 6 we present a few typical simulation results
for the Mach-Zehnder interferometer built from DLMs. We
assume that the input receives 0 events only, each event
carrying the message �cos�0� sin�0	. This corresponds to
�a0� a1	= �cos�0 + i sin�0�0	 in the quantum system. We
use a uniform random number to determine �0. In all these
simulations � = 0�99. The number of 0 (1) events after
the first X operation is denoted by N0 (N1). The num-
ber of 0 (1) events after the last X operation is denoted
by N2 (N3). The data points in Figure 6 are the simula-
tion results for the normalized intensity Ni/�N0 +N1	 for
i = 0�2�3 as a function of �. Lines represent the corre-
sponding results of quantum theory (see Eq. (12)). From
Figure 6 it is clear that the event-based processing by the
DLM network reproduces the probability distribution as
obtained from Eq. (12). Messages generated by DLMs pre-
serve the phase information that is essential for the system
to exhibit quantum interference effects.

Summarizing: We have shown that a DLM-network
can simulate single-photon quantum interference particle-
by-particle without using quantum theory. In practicular,
the previous example demonstrates that locally-connected
networks of processing units with a primitive learning
capability are sufficient to simulate, event-by-event, the

single-photon beam splitter and Mach-Zehnder interferom-
eter experiments of Grangier et al.13 The parts of the pro-
cessing units and network map one-to-one on the physical
parts of the experimental setup and only simple geometry
is used to construct the simulation algorithm. In this sense,
the simulation approach we propose satisfies Einstein’s cri-
teria of realism and causality.8

4.3. CNOT Operation

The schematic diagram of the DLM-network that performs
the CNOT operation on an event-by-event (particle-by-
particle) basis is shown in Figure 7. Conceptually the struc-
ture of this network is the same as in the case of a system of
a single qubit. As input to the DLM-network we now have
four (0, 1, 2 or 3) instead of two different types of events,
corresponding to the quantum states �00�, �01�, �10�, �11�.
Each event carries a message consisting of two real num-
bers y = �cos�i� sin�i	 for i = 0� � � � �3, corresponding to
the phase of the quantum mechanical probability ampli-
tudes, that is a0/�a0�� � � � � a3/�a3�. The internal state of each
DLM is represented by a unit vector of eight real num-
bers x= �x0� � � � � x7	 and there are sixteen candidate update
rules ()j = 0� � � �7* sj =±1,, see Eq. (18)) to choose from.
The rule that is actually used is determined by minimizing
the cost function C =−sjwT

j v. The transformation stage is
extremely simple: According to Eq. (13), all it has to do is
swap the two pairs of elements (x2� x3) and (x6� x7).

Instead of presenting results that show that the DLM-
processor of Figure 7 correctly performs the CNOT oper-
ation on an event-by-event basis, we consider the more
complicated network of four Hadamard gates and one
CNOT gate shown in Figure 3. Quantum mechanically,
this network acts as a CNOT gate in which the role of
control- and target qubit have been interchanged.6 For this
DLM-network to perform correctly it is essential that the
event-based simulation mimics the quantum interference
(generated by the Hadamard gates) correctly. In Table II
we present simulation results for the DLM-network shown

DLM 1 DLM 2Transformation
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Fig. 7. Diagram of a DLM-based processor that simulates a CNOT gate
on an event-by-event basis.
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Table II. Simulation results for the DLM-network shown in Figure 3,
demonstrating that the network reproduces the results of the corresponding
quantum circuit, i.e., a CNOT operation in which qubit 2 is the control
qubit and qubit 1 is the target qubit.6 The first half of the events are
discarded in the calculation of the frequency fi for observing an output
event of type i = 0�1�2�3, corresponding to the probability to observe
the quantum system in the state �00�, �01�, �10�, or �11�, respectively. For
200 events or more, the difference between the event-based simulation
results and the corresponding quantum mechanical probabilities is less
than 1%.

Number of events Qubit 1 Qubit 2 f0 f1 f2 f3

100 0 0 0�98 0�00 0�00 0�02
100 1 0 0�20 0�74 0�01 0�04
100 0 1 0�16 0�04 0�00 0�80
100 1 1 0�16 0�04 0�72 0�08

200 0 0 1�00 0�00 0�00 0�00
200 1 0 0�00 1�00 0�00 0�00
200 0 1 0�00 0�00 0�00 1�00
200 1 1 0�01 0�00 0�99 0�00

in Figure 3. Before the simulation starts, we use uniform
random numbers to initialize the internal vectors of the
DLMs (ten vectors in total). For simplicity, we take as
input messages �0 = �1 = �2 = �3 = 0. All these simula-
tions were carried out with � = 0�99. From Table II it is
clear that, also for a modest number of input events, the
network reproduces the results of the corresponding quan-
tum circuit, i.e., a CNOT operation in which qubit 2 is the
control qubit and qubit 1 is the target qubit.6

As an illustration of the use of SLMs, we replace all the
back-end DLMs in the CNOT circuit shown in Figure 7
by SLMs and repeat the simulations that yield the data in
Table II. From Table III we conclude that the randomized
version generates the correct results but significantly more
events are needed to achieve similar accuracy as in the
fully deterministic simulation.

4.4. Number Factoring

Finally, we discuss the results obtained by a DLM-based
simulation of the number factoring circuits depicted in
Figure 4. DLM networks (not shown) that perform the
Toffoli gate operation and the Fourier transform, which
involves several Hadamard operations and controlled phase

Table III. Simulation results for the DLM-network shown in Figure 3
in which each back-end DLM of the individual gates has been replaced by
a SLM. The latter uses random numbers to randomize the order in which
different output events are generated but does not change the frequencies
of the events. The first half of the input events are discarded for the
calculation of the frequencies fi for observing an output event of type
i = 0�1�2�3, corresponding to the probability to observe the quantum
system in the state �00�, �01�, �10�, or �11�, respectively.

Number of events Qubit 1 Qubit 2 f0 f1 f2 f3

2000 0 0 0�965 0�015 0�010 0�010
2000 1 0 0�007 0�970 0�012 0�011
2000 0 1 0�010 0�008 0�016 0�966
2000 1 1 0�005 0�016 0�963 0�016

shifts, are readily constructed by mimicking the procedure
for the construction of the DLM network of the CNOT
gate. Having done this, building the circuit in Figure 4
entails nothing than connecting the DLM networks that
simulate the various quantum gates. As this circuit involves
seven qubits, the internal vectors of the DLMs have 256
elements.

Section 2.5 shows that if a= 7, we expect to find Q1 =
	Qz

1� = 0, Q2 = 	Qz
2� = 0�5, and Q3 = 	Qz

3� = 0�5. Simi-
larly, for a = 11 we expect to find Q1 = 	Qz

1� = 0, Q2 =
	Qz

2� = 0, and Q3 = 	Qz
3� = 0�5. In the DLM approach, by

simply counting the number of 1 events in the three out-
put channels of the Fourier transform (inside the dashed
box in Fig. 4) and dividing these numbers by the total
number of events analyzed, we obtain numerical estimates
for the qubits Q1 = 	Qz

1�, Q2 = 	Qz
2�, and Q3 = 	Qz

3�. In
Figures 8–11 we present simulation results for the DLM
(left panel) and SLM (right panel) implementation of the
circuit depicted in Figure 4, for the two cases a= 7�11 and
for two choices of the control parameter � = 0�99�0�999.
After processing a few events, (less than 200 if � = 0�99
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Fig. 8. Event-by-event simulation of Shor’s quantum algorithm for fac-
toring the integer N = 15, using the value a= 7 (see Section 2.5). Each
data point represents the average of 100 output events. The parameter that
controls the learning process of the DLMs is �= 0�99. Left: Determinis-
tic simulation employing DLMs. Right: Stochastic simulation employing
SLMs.
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Fig. 9. Same as Figure 8, except that a= 11 (see Section 2.5).

less than 2000 if �= 0�999) all the DLM networks repro-
duce the results of quantum theory with high accuracy.
Replacing DLMs by their stochastic equivalents (SLMs),
we see that the fluctuations are larger than if we use DLMs
and that the system as a whole “learns” much slower. This
is to be expected: the probabilistic mechanism to distribute
events over the output channels of the SLMs makes much
more “mistakes” than the deterministic process used by the
DLMs. DLMs encode the information about the probabil-
ity and phase in a much more effective, compact manner
than SLMs. In the case of the latter, the correct probability
distribution is encoded in a statistical manner and can only
be recovered by analyzing a lot of events.

From the description of the learning process, it is clear
that � controls the rate of learning or, equivalently, the rate
at which learned information can be forgotten. Further-
more it is evident that the difference between a constant
input to a DLM and the learned value of its internal vari-
able cannot be smaller than 1−�. In other words, � also
limits the precision with which the internal variable can
represent a sequence of constant input values. On the other
hand, the number of events has to balance the rate at which
the DLM can forget a learned input value. The smaller
1−� is, the larger the number of events has to be for the
DLM to adapt to changes in the input data. The results
depicted in Figures 8–11 confirm this behavior.
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Fig. 10. Event-by-event simulation of Shor’s quantum algorithm for
factoring the integer N = 15, using the value a = 7 (see Section 2.5).
Each data point represents the average of 100 output events. The param-
eter that controls the learning process of the DLMs is � = 0�999. Left:
Deterministic simulation employing DLMs. Right: Stochastic simulation
employing SLMs.

5. DISCUSSION

We have shown that locally connected networks of
machines that have primitive learning capabilities can be
used to perform a deterministic, event-based simulation
of quantum computation. On the other hand it is known
that the time evolution of the wave function of a quan-
tum system can be simulated on a quantum computer.6�35

Therefore, it is possible to simulate real-time quantum
dynamics through a deterministic event-based simulation
by constructing appropriate DLM-networks. The work pre-
sented in this paper suggests that there exist deterministic,
particle-like processes that reproduce quantum mechanical
behavior.

Just as any other method for simulating quantum
computers,30 the DLM-based simulation approach requires
memory resources that increase exponentially with the
number of qubits. This exponential increase is merely a
combinatorial effect and is not at all related to the quantum
nature of the phenomena we want to simulate. As a matter
of fact, it is present in all classical or quantum many-body
systems (including quantum computers). For instance, if we
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Fig. 11. Same as Figure 10, except that a= 11 (see Section 2.5).

consider one of the most basic statistical mechanics mod-
els, the Ising model, the number of possible states of this
system also grows exponentially with the number of spins
but there obviously is nothing “quantum” about this model.

The computational efficiency of the event-based
approach is lower than the efficiency of algorithms that
directly compute the product of the unitary matrices. This
is hardly a surprise: The former approach simulates quan-
tum behavior by generating individual events. The latter
can only simulate the outcome of (infinitely) many of
such events and provides no information about individ-
ual events.8 An analogy may be helpful to understand the
conceptual difference between these two approaches. It is
well known that an ensemble of simple, symmetric ran-
dom walks may be approximated by a diffusion equation
(for vanishing lattice spacing and time step). Also here we
have two options. If we are interested in individual events,
we have no other choice than to simulate the discrete ran-
dom walk. However, if we want to study the behavior of
many random walkers, it is computationally much more
efficient to solve the corresponding diffusion problem.

Our event-based approach can be extended to mimic
the effects of decoherence. In quantum theory, decoher-
ence causes the loss of phase coherence.36 In the DLMs
that we describe in Section 4, a single parameter (�) con-
trols the loss of memory, of both the probability and the

phase. A simple extension would be to control the learning
process of the probability and phase separately, using two
control parameters. We leave this topic for future research.
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