618 research outputs found
Machine learning for targeted display advertising: Transfer learning in action
This paper presents a detailed discussion of problem formulation and
data representation issues in the design, deployment, and operation of a
massive-scale machine learning system for targeted display advertising.
Notably, the machine learning system itself is deployed and has been in
continual use for years, for thousands of advertising campaigns (in
contrast to simply having the models from the system be deployed). In
this application, acquiring sufficient data for training from the ideal
sampling distribution is prohibitively expensive. Instead, data are
drawn from surrogate domains and learning tasks, and then transferred
to the target task. We present the design of this multistage transfer
learning system, highlighting the problem formulation aspects. We then
present a detailed experimental evaluation, showing that the different
transfer stages indeed each add value. We next present production
results across a variety of advertising clients from a variety of
industries, illustrating the performance of the system in use. We close
the paper with a collection of lessons learned from the work over half a
decade on this complex, deployed, and broadly used machine learning system.Statistics Working Papers Serie
Grain Elevators of South Dakota and Associated Farm Supply Businesses: Some Factors Affecting Their Growth and Future Prospects
The purpose of this study is to explore some of the characteristics of the South Dakota grain elevator and farm supply industry and to identify factors affecting the growth or survival of an elevator. It is possible by utilizing known economies of volume through their marketing systems, South Dakota producers could realize a savings of at least $19 million annually
Spontaneous Variability and Circadian Distribution of Ectopic Activity in Patients With Malignant Ventricular Arrhythmia
Day to day variability of ventricular ectopic activity was analyzed in 45 patients with a history of malignant ventricular tachyarrhythmias who underwent two successive 24 h periods of ambulatory electrocardiographic (ECG) monitoring in the absence of antiarrhythmic drugs; 26 were male and 19 female, with a mean age of 56 years (range 15 to 76). The total number of single ventricular premature beats, couplets and ventricular tachycardia beats and runs on days 1 and 2 demonstrated a consistent overall correlation (r = 0.76 to 0.84). Individual variability was evaluated by regression analysis with determination of 95% confidence limits.The minimal decrease in arrhythmia density necessary to distinguish true drug effect from spontaneous variability was 64% for single ventricular premature beats, 83% for couplets, 90% for ventricular tachycardia runs and 93% for ventricular tachycardia beats. To meet the criteria for arrhythmia aggravation, the arrhythmia density had to increase by 400, 877, 1,500 and 2,400%, respectively. Multivariate analysis disclosed an inverse relation between day to day arrhythmia variability and baseline arrhythmia density and age. Variability was more pronounced in patients with coronary artery disease but was not influenced by the type of presenting arrhythmia or left ventricular function.The diurnal distribution of arrhythmias and heart rate followed a distinct circadian pattern. These data indicate that, despite good group reproducibility, spontaneous arrhythmia variability in individuals is substantial, necessitating standards to define both drug effect and arrhythmia aggravation
Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets
Using the Penning trap mass spectrometer TITAN, we performed the first direct
mass measurements of 20,21Mg, isotopes that are the most proton-rich members of
the A = 20 and A = 21 isospin multiplets. These measurements were possible
through the use of a unique ion-guide laser ion source, a development that
suppressed isobaric contamination by six orders of magnitude. Compared to the
latest atomic mass evaluation, we find that the mass of 21Mg is in good
agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements
reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times,
respectively, resulting in a significant departure from the expected behavior
of the isobaric multiplet mass equation in both the A = 20 and A = 21
multiplets. This presents a challenge to shell model calculations using either
the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving
interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure
Lipocalin 2 expression is associated with aggressive features of endometrial cancer
Background: Increased expression of lipocalin 2 (LCN2) has been observed in several cancers. The aim of the present study was to investigate LCN2 in endometrial cancer in relation to clinico-pathologic phenotype, angiogenesis, markers of epithelial-mesenchymal transition (EMT), and patient survival. Methods: Immunohistochemical staining was performed using a human LCN2 antibody on a population-based series of endometrial cancer patients collected in Hordaland County (Norway) during 1981-1990 (n = 256). Patients were followed from the time of primary surgery until death or last follow-up in 2007. The median follow-up time for survivors was 17 years. Gene expression data from a prospectively collected endometrial cancer series (n = 76) and a publicly available endometrial cancer series (n = 111) was used for gene correlation studies. Results: Expression of LCN2 protein, found in 49% of the cases, was associated with non-endometrioid histologic type (p = 0.001), nuclear grade 3 (p = 0.001), >50% solid tumor growth (p = 0.001), ER and PR negativity (p = 0.028 and 0.006), and positive EZH2 expression (p < 0.001). LCN2 expression was significantly associated with expression of VEGF-A (p = 0.021), although not with other angiogenesis markers examined (vascular proliferation index, glomeruloid microvascular proliferation, VEGF-C, VEGF-D or bFGF2 expression). Further, LCN2 was not associated with several EMT-related markers (E-cadherin, N-cadherin, P-cadherin, β-catenin), nor with vascular invasion (tumor cells invading lymphatic or blood vessels). Notably, LCN2 was significantly associated with distant tumor recurrences, as well as with the S100A family of metastasis related genes. Patients with tumors showing no LCN2 expression had the best outcome with 81% 5-year survival, compared to 73% for intermediate and 38% for the small subgroup with strong LCN2 staining (p = 0.007). In multivariate analysis, LCN2 expression was an independent prognostic factor in addition to histologic grade and FIGO stage. Conclusion: Increased LCN2 expression is associated with aggressive features and poor prognosis in endometrial cancer
Precision mass measurements of magnesium isotopes and implications on the validity of the Isobaric Mass Multiplet Equation
If the mass excess of neutron-deficient nuclei and their neutron-rich mirror
partners are both known, it can be shown that deviations of the Isobaric Mass
Multiplet Equation (IMME) in the form of a cubic term can be probed. Such a
cubic term was probed by using the atomic mass of neutron-rich magnesium
isotopes measured using the TITAN Penning trap and the recently measured
proton-separation energies of Cl and Ar. The atomic mass of
Mg was found to be within 1.6 of the value stated in the Atomic
Mass Evaluation. The atomic masses of Mg were measured to be both
within 1, while being 8 and 34 times more precise, respectively. Using
the Mg mass excess and previous measurements of Cl we uncovered a
cubic coefficient of = 28(7) keV, which is the largest known cubic
coefficient of the IMME. This departure, however, could also be caused by
experimental data with unknown systematic errors. Hence there is a need to
confirm the mass excess of S and the one-neutron separation energy of
Cl, which have both come from a single measurement. Finally, our results
were compared to ab initio calculations from the valence-space in-medium
similarity renormalization group, resulting in a good agreement.Comment: 7 pages, 3 figure
Storm time polar cap expansion: interplanetary magnetic field clock angle dependence
It is well known that the polar cap, delineated by the open–closed field line boundary (OCB),
responds to changes in the interplanetary magnetic field (IMF).
In general, the boundary moves equatorward when the IMF turns southward and contracts
poleward when the IMF turns northward. However,
observations of the OCB are spotty and limited in local time,
making more detailed studies of its IMF dependence difficult.
Here, we simulate five solar storm periods with the coupled model consisting of the Open
Geospace General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere Ionosphere
Model (CTIM) and the Rice Convection Model (RCM),
i.e., the OpenGGCM-CTIM-RCM, to estimate the location and dynamics of the OCB.
For these events, polar cap boundary location observations are also obtained from Defense Meteorological
Satellite Program (DMSP) precipitation spectrograms and compared with the model output.
There is a large scatter in the DMSP observations and in the model output.
Although the model does not predict the OCB with high fidelity for every observation,
it does reproduce the general trend as a function of IMF clock angle.
On average, the model overestimates the latitude of the open–closed field line boundary
by 1.61∘. Additional analysis of the simulated polar cap boundary dynamics across
all local times shows that the MLT of the largest polar cap expansion closely correlates
with the IMF clock angle, that the strongest correlation occurs when the IMF is southward, that
during strong southward IMF the polar cap shifts sunward, and that the polar cap rapidly
contracts at all local times when the IMF turns northward.</p
Toward a chemical reanalysis in a coupled chemistry-climate model: an evaluation of MOPITT CO assimilation and its impact on tropospheric composition
We examine in detail a 1 year global reanalysis of carbon monoxide (CO) that is based on joint assimilation of conventional meteorological observations and Measurement of Pollution in The Troposphere (MOPITT) multispectral CO retrievals in the Community Earth System Model (CESM). Our focus is to assess the impact to the chemical system when CO distribution is constrained in a coupled full chemistry-climate model like CESM. To do this, we first evaluate the joint reanalysis (MOPITT Reanalysis) against four sets of independent observations and compare its performance against a reanalysis with no MOPITT assimilation (Control Run). We then investigate the CO burden and chemical response with the aid of tagged sectoral CO tracers. We estimate the total tropospheric CO burden in 2002 (from ensemble mean and spread) to be 371 ± 12% Tg for MOPITT Reanalysis and 291 ± 9% Tg for Control Run. Our multispecies analysis of this difference suggests that (a) direct emissions of CO and hydrocarbons are too low in the inventory used in this study and (b) chemical oxidation, transport, and deposition processes are not accurately and consistently represented in the model. Increases in CO led to net reduction of OH and subsequent longer lifetime of CH4 (Control Run: 8.7 years versus MOPITT Reanalysis: 9.3 years). Yet at the same time, this increase led to 5-10% enhancement of Northern Hemisphere O3 and overall photochemical activity via HOx recycling. Such nonlinear effects further complicate the attribution to uncertainties in direct emissions alone. This has implications to chemistry-climate modeling and inversion studies of longer-lived species
T Wave Alternans in high arrhythmic risk patients: Analysis in time and frequency domains: A pilot study
BACKGROUND: T wave alternans (TA) is a repolarisation phenomenon manifesting as a microvolt beat to beat change in the amplitude of the T wave and ST segment. TA has been shown to be a predictor of arrhythmic risk in unselected myocardial infarction populations. TA has not been used to differentiate risk within the ischaemic cardiomyopathy population. METHODS: The subjects investigated comprised, Group 1: 7 stable patients with remote (>20 months) extensive myocardial scarring and no arrhythmic events (NYHA 3 and 4). Group2: 9 post infarction patients with malignant arrhythmia and implantable defibrillator. During breath holding, 20 continuous QRST complexes from each patients X, Y and Z leads were digitally recorded. Time domain, resultant absolute difference vectors (ATA), were calculated for alternate resultant T wave sequences. Group differences between the magnitude and temporal distribution of mean ATAs and their spectral and cross-spectral analysis were compared. RESULTS: Group 1 v Group 2 mean ATAs were 10.7 (7.17) v 11.7 (8.48) respectively, not significant. Each group had a homogenous temporal distribution of ATAs. Both group's largest mean ATA frequency components were between 0 to 25 Hz, the largest ATA component being at the DC frequency. Cross spectral analysis showed no significant differences in group ATA frequency content. CONCLUSION: The frequency content and microvolt magnitude of T wave alternans was not significantly different in these two groups. The specificity of T wave alternans for differentiating arrhythmic risk in post infarction scarring and heart failure needs investigation
- …