33 research outputs found

    Evolutionary and Functional Relationships in the Truncated Hemoglobin Family

    Get PDF
    Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends.Fil: Bustamante, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Radusky, Leandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Boechi, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Ten Have, Arjen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentin

    PDBe-KB: a community-driven resource for structural and functional annotations.

    Get PDF
    The Protein Data Bank in Europe-Knowledge Base (PDBe-KB, https://pdbe-kb.org) is a community-driven, collaborative resource for literature-derived, manually curated and computationally predicted structural and functional annotations of macromolecular structure data, contained in the Protein Data Bank (PDB). The goal of PDBe-KB is two-fold: (i) to increase the visibility and reduce the fragmentation of annotations contributed by specialist data resources, and to make these data more findable, accessible, interoperable and reusable (FAIR) and (ii) to place macromolecular structure data in their biological context, thus facilitating their use by the broader scientific community in fundamental and applied research. Here, we describe the guidelines of this collaborative effort, the current status of contributed data, and the PDBe-KB infrastructure, which includes the data exchange format, the deposition system for added value annotations, the distributable database containing the assembled data, and programmatic access endpoints. We also describe a series of novel web-pages-the PDBe-KB aggregated views of structure data-which combine information on macromolecular structures from many PDB entries. We have recently released the first set of pages in this series, which provide an overview of available structural and functional information for a protein of interest, referenced by a UniProtKB accession

    pyFoldX: enabling biomolecular analysis and engineering along structural ensembles

    No full text
    Data de publicació electrònica: 17-02-2022Recent years have seen an increase in the number of structures available, not only for new proteins but also for the same protein crystallized with different molecules and proteins. While protein design software have proven to be successful in designing and modifying proteins, they can also be overly sensitive to small conformational differences between structures of the same protein. To cope with this, we introduce here pyFoldX, a python library that allows the integrative analysis of structures of the same protein using FoldX, an established forcefield and modeling software. The library offers new functionalities for handling different structures of the same protein, an improved molecular parametrization module, and an easy integration with the data analysis ecosystem of the python programming language. pyFoldX rely on the FoldX software for energy calculations and modelling, which can be downloaded upon registration in http://foldxsuite.crg.eu/ and its licence is free of charge for academics. The pyFoldX library is open-source. Full details on installation, tutorials covering the library functionality, and the scripts used to generate the data and figures presented in this paper are available at https://github.com/leandroradusky/pyFoldX.This work was supported by funds from the European Regional Development Fund (ERDF) and the Generalitat de Catalunya [VEIS-001-P-001647, Programa Operatiu FEDER de Catalunya 2014-2020] and funds from Spanish Ministry of Science, Innovation and University (MCIU) [PGC2018-101271-B-I00]. The authors also acknowledge the support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Cataluny

    Protein-assisted RNA fragment docking (RnaX) for modeling RNA-protein interactions using ModelX

    No full text
    RNA-protein interactions are crucial for such key biological processes as regulation of transcription, splicing, translation, and gene silencing, among many others. Knowing where an RNA molecule interacts with a target protein and/or engineering an RNA molecule to specifically bind to a protein could allow for rational interference with these cellular processes and the design of novel therapies. Here we present a robust RNA-protein fragment pair-based method, termed RnaX, to predict RNA-binding sites. This methodology, which is integrated into the ModelX tool suite (http://modelx.crg.es), takes advantage of the structural information present in all released RNA-protein complexes. This information is used to create an exhaustive database for docking and a statistical forcefield for fast discrimination of true backbone-compatible interactions. RnaX, together with the protein design forcefield FoldX, enables us to predict RNA-protein interfaces and, when sufficient crystallographic information is available, to reengineer the interface at the sequence-specificity level by mimicking those conformational changes that occur on protein and RNA mutagenesis. These results, obtained at just a fraction of the computational cost of methods that simulate conformational dynamics, open up perspectives for the engineering of RNA-protein interfaces.This work was supported by funding from the Spanish Ministry of Economy, Industry, and Competitiveness (Plan Nacional BFU2015-63571-P), the Centro de Excelencia Severo Ochoa, and the Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Catalunya. The project that gave rise to these results was supported by a fellowship from “la Caixa” Foundation (ID 100010434; fellowship code LCF/BQ/DI19/11730061)

    ProteinFishing: a protein complex generator within the ModelX toolsuite

    No full text
    Summary: Accurate 3D modelling of protein-protein interactions (PPI) is essential to compensate for the absence of experimentally determined complex structures. Here, we present a new set of commands within the ModelX toolsuite capable of generating atomic-level protein complexes suitable for interface design. Among these commands, the new tool ProteinFishing proposes known and/or putative alternative 3D PPI for a given protein complex. The algorithm exploits backbone compatibility of protein fragments to generate mutually exclusive protein interfaces that are quickly evaluated with a knowledge-based statistical force field. Using interleukin-10-R2 co-crystalized with interferon-lambda-3, and a database of X-ray structures containing interleukin-10, this algorithm was able to generate interleukin-10-R2/interleukin-10 structural models in agreement with experimental data. Availability and implementation: ProteinFishing is a portable command-line tool included in the ModelX toolsuite, written in C++, that makes use of an SQL (tested for MySQL and MariaDB) relational database delivered with a template SQL dump called FishXDB. FishXDB contains the empty tables of ModelX fragments and the data used by the embedded statistical force field. ProteinFishing is compiled for Linux-64bit, MacOS-64bit and Windows-32bit operating systems. This software is a proprietary license and is distributed as an executable with its correspondent database dumps. It can be downloaded publicly at http://modelx.crg.es/. Licenses are freely available for academic users after registration on the website and are available under commercial license for for-profit organizations or companies.This work was supported by funding from the Spanish Ministry of Science and Innovation (Plan Nacional BFU2015-63571-P). The authors also acknowledge the support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Catalunya. The project that gave rise to these results was supported by a fellowship from ‘la Caixa’ Foundation (ID 100010434; fellowship code LCF/BQ/DI19/11730061

    FoldX accurate structural protein-DNA binding prediction using PADA1 (Protein Assisted DNA Assembly 1)

    No full text
    The speed at which new genomes are being sequenced highlights the need for genome-wide methods capable of predicting protein-DNA interactions. Here, we present PADA1, a generic algorithm that accurately models structural complexes and predicts the DNA-binding regions of resolved protein structures. PADA1 relies on a library of protein and double-stranded DNA fragment pairs obtained from a training set of 2103 DNA-protein complexes. It includes a fast statistical force field computed from atom-atom distances, to evaluate and filter the 3D docking models. Using published benchmark validation sets and 212 DNA-protein structures published after 2016 we predicted the DNA-binding regions with an RMSD of 95% of the cases. We show that the quality of the docked templates is compatible with FoldX protein design tool suite to identify the crystallized DNA molecule sequence as the most energetically favorable in 80% of the cases. We highlighted the biological potential of PADA1 by reconstituting DNA and protein conformational changes upon protein mutagenesis of a meganuclease and its variants, and by predicting DNA-binding regions and nucleotide sequences in proteins crystallized without DNA. These results opens up new perspectives for the engineering of DNA-protein interfaces.Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013–2017′; CERCA Programme/Generalitat de Catalunya; Ministerio de Economia y Competitividad and FEDER funds (European Regional Development Fund) [BFU2015-63571-P]. Funding for open access charge: Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013–2017’; CERCA Programme/Generalitat de Catalunya; Ministerio de Economia y Competitividad and FEDER funds (European Regional Development Fund) [BFU2015-63571-P]

    PDBe-KB: collaboratively defining the biological context of structural data

    No full text
    The Protein Data Bank in Europe - Knowledge Base (PDBe-KB, https://pdbe-kb.org) is an open collaboration between world-leading specialist data resources contributing functional and biophysical annotations derived from or relevant to the Protein Data Bank (PDB). The goal of PDBe-KB is to place macromolecular structure data in their biological context by developing standardised data exchange formats and integrating functional annotations from the contributing partner resources into a knowledge graph that can provide valuable biological insights. Since we described PDBe-KB in 2019, there have been significant improvements in the variety of available annotation data sets and user functionality. Here, we provide an overview of the consortium, highlighting the addition of annotations such as predicted covalent binders, phosphorylation sites, effects of mutations on the protein structure and energetic local frustration. In addition, we describe a library of reusable web-based visualisation components and introduce new features such as a bulk download data service and a novel superposition service that generates clusters of superposed protein chains weekly for the whole PDB archive.Funding: ELIXIR [IDP implementation study]; Biotechnology and Biological Sciences Research Council via the 3D-Gateway [BB/T01959X/1]; FunPDBe [BB/P024351/1]; J.D. acknowledges support from the Ministry of Education, Youth and Sport of the Czech Republic [INBIO CZ.02.1.01/0.0/0.0/16_026/0008451]; R.S., K.B. and J.D. also acknowledge support from the Ministry of Education, Youth and Sport of the Czech Republic [ELIXIR-CZ LM2018131]; L.M. acknowledges support from the European Union's Horizon 2020 Programme (H2020-INFRAIA-2018-1) [823839]; Research Foundation Flanders (FWO) [G032816N, G042518N, G028821N]; W.V. acknowledges support from the Research Foundation Flanders (FWO) [G032816N, G028821N]; A.R. acknowledges support from the Fondazione Cassa Di Risparmio di Firenze [24316]; European Commission [101017567]; M.H.C. acknowledges the AIRC project to MHC [IG 23539]; J.F.-R. acknowledges support from the Spanish Ministry of Science and Innovation [PID2019-110167RB-I00]; N.R. acknowledges support from the Norwegian Research Council (Norges Forskningsråd) [288008]; E.D.L. acknowledges support from the European Union's Horizon 2020 research and innovation programme [819318]; M.J.E.S. acknowledges support from the Wellcome Trust [104955/Z/14/Z, 218242/Z/19/Z]. Funding for open access charge: Biotechnology and Biological Sciences Research Council grant [BB/T01959X/1]; Wellcome Trust [104955/Z/14/Z and 218242/Z/19/Z

    LigQ: A Webserver to Select and Prepare Ligands for Virtual Screening

    No full text
    Virtual screening is a powerful methodology to search for new small molecule inhibitors against a desired molecular target. Usually, it involves evaluating thousands of compounds (derived from large databases) in order to select a set of potential binders that will be tested in the wet-lab. The number of tested compounds is directly proportional to the cost, and thus, the best possible set of ligands is the one with the highest number of true binders, for the smallest possible compound set size. Therefore, methods that are able to trim down large universal data sets enriching them in potential binders are highly appreciated. Here we present LigQ, a free webserver that is able to (i) determine best structure and ligand binding pocket for a desired protein, (ii) find known binders, as well as potential ligands known to bind to similar protein domains, (iii) most importantly, select a small set of commercial compounds enriched in potential binders, and (iv) prepare them for virtual screening. LigQ was tested with several proteins, showing an impressive capacity to retrieve true ligands from large data sets, achieving enrichment factors of over 10%. LigQ is available at http://ligq.qb.fcen.uba.ar/.Fil: Radusky, Leandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Ruiz Carmona, Sergio. Universidad de Barcelona; EspañaFil: Modenutti, Carlos Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Barril, Xavier. Universidad de Barcelona; España. Catalan Institution for Research and Advanced Studies; EspañaFil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentin
    corecore