423 research outputs found

    Implications of land use change in tropical Northern Africa under global warming

    Get PDF
    A major link between climate and humans in Northern Africa, and the Sahel in particular, is land use and associated land cover change, mainly where subsistence farming prevails. Here we assess possible feedbacks between the type of land use and harvest intensity and climate by analyzing a series of idealized GCM experiments using the MPI-ESM. The base line for these experiments is a simulation forced by the RCP8.5 scenario which includes strong greenhouse gas emissions and anthropogenic land cover changes. The anthropogenic land cover changes in the RCP8.5 scenario include a mixture of pasture and agriculture. In subsequent simulations, we replace the entire area affected by anthropogenic land cover change in the region between the Sahara in the North and the Guinean Coast in the South (4 to 20° N) by either pasture or agriculture, respectively. In a second setup we vary the amount of harvest in case of agriculture. The RCP8.5 base line simulation reveals strong changes in mean agriculture and monsoon rainfall. In comparison with these changes, any variation of the type of land use in the study area leads to very small, mostly insignificantly small, additional differences in mean temperature and annual precipitation change in this region. Within the uncertainty of the representation of land use in current ESMs, our study suggests marginal feedback between land use changes and climate changes triggered by strong greenhouse gas emissions. Hence as a good approximation, climate change can be considered as external driver in models of land-use – conflict dynamics when seasonal or mean values are used as external driver

    Land contributions to natural CO2 variability on time scales of centuries

    No full text
    The present paper addresses the origin of natural variability arising internally from the climate system of the global carbon cycle at centennial time scales. The investigation is based on the Max Planck Institute for Meteorology, Coupled Model Intercomparison Project Phase 5 (MPI-MCMIP5) preindustrial control simulations with the MPI Earth System Model in low resolution (MPI-ESM-LR) supplemented by additional simulations conducted for further analysis. The simulations show a distinct low-frequency component in the global terrestrial carbon content that induces atmospheric CO2 variations on centennial time scales of up to 3 ppm. The main drivers for these variations are low-frequency fluctuations in net primary production (NPP) of the land biosphere. The signal arises from small regions scattered across the whole globe with a pronounced source in North America. The main reason for the global NPP fluctuations is found in climatic changes leading to long-term variations in leaf area index, which largely determines the strength of photosynthetic carbon assimilation. The underlying climatic changes encompass several spatial diverse climatic alterations. For the particular case of North America, the carbon storage changes are (besides NPP) also dependent on soil respiration. This second mechanism is strongly connected to low-frequency variations in incoming shortwave radiation at the surface. ©2013. American Geophysical Union. All Rights Reserved

    Climate variability-induced uncertainty in mid-Holocene atmosphere-ocean-vegetation feedbacks

    Get PDF
    Previous modelling studies have shown that the response of the ocean and the vegetation to mid-Holocene insolation feeds back on the climate. There is less consensus, however, on the relative magnitude of the two feedbacks and the strength of the synergy between them. This discrepancy may arise partly from the statistical uncertainty caused by internal climate variability as the common analysis period is only about a century. Therefore, we have performed an ensemble of centennial-scale simulations using the general circulation model ECHAM5/JSBACH-MPIOM. The direct atmospheric response and the weak atmosphere-vegetation feedback are statistically robust. The synergy is always weak and it changes sign between the ensemble members. The simulations, including a dynamic ocean, show a large variability at sea-ice margins. This variability leads to a sampling error which affects the magnitude of the diagnosed feedbacks. Citation: Otto, J., T. Raddatz, and M. Claussen (2009), Climate variability-induced uncertainty in mid-Holocene atmosphere-ocean-vegetation feedbacks, Geophys. Res. Lett., 36, L23710, doi:10.1029/2009GL041457

    Is the Climate Sensitivity Even More Uncertain?

    Get PDF
    Uncertainty in climate sensitivity is a fundamental problem for projections of the future climate. Climate sensitivity is defined as the equilibrium response of global-mean surface air temperature to a doubling of the atmospheric CO2 concentration from the preindustrial level (. 280 ppm). In spite of various efforts to estimate its value, climate sensitivity is still not well constrained (IPCC, 2007, pp.718-727 and pp.798-799; Gerard and Baker, 2007), posing a difficulty to informing climate change policy. Here we show that the climate sensitivity is in fact even more uncertain than has been found by earlier studies (Andronova and Schlesinger, 2001; Gregory et al., 2002; Knutti et al., 2002; Forest et al., 2006; Hegerl et al., 2006). Our results suggest that uncertainty in historical radiative forcing has not been sufficiently considered and that including a carbon cycle feedback, which in principle offers an additional constraint on climate sensitivity, does not reduce the uncertainty in climate sensitivity due to the poor knowledge of the global carbon budget before the year 1850

    Two drastically different climate states on an Earth-like terra-planet

    No full text
    We study an Earth-like terra-planet (water-limited terrestrial planet) with an overland recycling mechanism bringing fresh water back from the high latitudes to the low latitudes. By performing model simulations for such a planet we find two drastically different climate states for the same set of boundary conditions and parameter values: a cold and wet (CW) state with dominant low-latitude precipitation and a hot and dry (HD) state with only high-latitude precipitation. We notice that for perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo while above the threshold only the CW state is stable. Starting from the HD state and increasing background soil albedo above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35 °C globally, which is of the order of the temperature difference between present day and the Snowball Earth state. When albedo starting from the CW state is reduced down to zero the terra-planet does not shift back to the HD state (no closed hysteresis). This is due to the high cloud cover in the CW state hiding the surface from solar irradiation so that surface albedo has only a minor effect on the top of the atmosphere radiation balance. Additional simulations with present-day Earth's obliquity all lead to the CW state, suggesting a similar abrupt transition from the HD state to the CW state when increasing obliquity from zero. Our study also has implications for the habitability of Earth-like terra-planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer edge, the resupply of water at low latitudes stabilizes the greenhouse effect and keeps the planet in the HD state and may prevent water from getting trapped at high latitudes in frozen form. Overall, the existence of bistability in the presence of an overland recycling mechanism hints at the possibility of a wider habitable zone for Earth-like terra-planets at low obliquities

    Past land use decisions have increased mitigation potential of reforestation

    Get PDF
    Anthropogenic land cover change (ALCC) influences global mean temperatures via counteracting effects: CO2 emissions contribute to global warming, while biogeophysical effects, in particular the increase in surface albedo, often impose a cooling influence. Previous studies of idealized, large-scale deforestation found that albedo cooling dominates over CO 2 warming in boreal regions, indicating that boreal reforestation is not an effective mitigation tool. Here we show the importance of past land use decisions in influencing the mitigation potential of reforestation on these lands. In our simulations, CO2 warming dominates over albedo cooling because past land use decisions resulted in the use of the most productive land with larger carbon stocks and less snow than on average. As a result past land use decisions extended CO2 dominance to most agriculturally important regions in the world, suggesting that in most places reversion of past land cover change could contribute to climate change mitigation. While the relative magnitude of CO2 and albedo effects remains uncertain, the historical land use pattern is found to be biased towards stronger CO2 and weaker albedo effects as compared to idealized large-scale deforestation. Copyright 2011 by the American Geophysical Union

    Contribution of anthropogenic land cover change emissions to preindustrial atmospheric CO2

    No full text
    Based on a recent reconstruction of anthropogenic land cover change (ALCC), we derive the associated CO2 emissions since 800 AD by two independent methods: a bookkeeping approach and a process model. The results are compared with the pre-industrial development of atmospheric CO2 known from antarctic ice cores. Our results show that pre-industrial CO2 emissions from ALCC have been relevant for the pre-industrial carbon cycle, although before 1750 AD their trace in atmospheric CO2 is obscured by other processes of similar magnitude. After 1750 AD, the situation is different: the steep increase in atmospheric CO2 until 1850 AD-this is before fossil fuel emissions rose to significant values-is to a substantial part explained by growing emissions from ALCC. © 2010 The Authors Tellus B © 2010 International Meteorological Institute in Stockholm
    • …
    corecore