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Abstract 

Uncertainty in climate sensitivity is a fundamental problem for projections of the future 

climate. Climate sensitivity is defined as the equilibrium response of global-mean 

surface air temperature to a doubling of the atmospheric CO2 concentration from the 

preindustrial level (≈ 280 ppm). In spite of various efforts to estimate its value, climate 

sensitivity is still not well constrained (IPCC, 2007, pp.718-727 and pp.798-799; Gerard 

and Baker, 2007), posing a difficulty to informing climate change policy. Here we show 

that the climate sensitivity is in fact even more uncertain than has been found by earlier 

studies (Andronova and Schlesinger, 2001; Gregory et al., 2002; Knutti et al., 2002; 

Forest et al., 2006; Hegerl et al., 2006). Our results suggest that uncertainty in historical 

radiative forcing has not been sufficiently considered and that including a carbon cycle 

feedback, which in principle offers an additional constraint on climate sensitivity, does 

not reduce the uncertainty in climate sensitivity due to the poor knowledge of the global 

carbon budget before the year 1850. 
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Is the Climate Sensitivity Even More Uncertain? 
Katsumasa Tanaka 
Thomas Raddatz  
Brian C. O’Neill  
Christian H. Reick  

Introduction 
Atmosphere-Ocean General Circulation Models (AOGCMs) show different climate 

sensitivity ranging from 1.9°C to 4.6°C
 
(IPCC, 2007, pp.798-799), reflecting our poor 

understanding of the Earth’s radiation budget and the response of the hydrological cycle 

and the biosphere to climate change. 

Climate sensitivity can be estimated also by an inversion approach using 

historical observations over various periods and time scales. The uncertainties in 

existing inversion estimates are dominated by uncertainties in reconstructions of 

historical surface air temperature. Uncertainty in historical radiative forcing has 

received much less attention. Previous inversion studies express this forcing uncertainty 

by introducing an additional parameter to scale a presumed time-evolution of the 

aerosol forcing, with the exception of one study (Hegerl et al., 2006) that uses different 

realizations of volcanic and solar forcing. The scaling approach does not fully capture 

radiative forcing uncertainty, because the influence of its temporal structure on climate 

may also be relevant for climate sensitivity estimation. Previous inversion studies have 

not also considered interactions of the climate system with other aspects of the Earth 

system (e.g. carbon cycle feedbacks and anthropogenic changes in land albedo), despite 

the recognized importance of these feedbacks for future climate projections (Cox et al., 

2000; IPCC, 2007;). 

Methods 
Here we investigate the effect of radiative forcing uncertainty and carbon cycle 

feedback on the estimation of climate sensitivity using an inversion setup of the 

Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate model (ACC2) 

(Tanaka et al., 2007; Tanaka, 2008) for the period 1750-2000. In ACC2, the carbon 

cycle, atmospheric chemistry, and the climate system are linked via feedbacks and 

therefore jointly affect the estimation of various uncertain parameters in each of these 

components (Tables S1 and S2 of Supplementary Information). 

Radiative forcing is represented as the sum of three types of forcing: calculated 

radiative forcing subject to uncertainties (CO2, CH4, and N2O forcing), 

prescribed/parameterized radiative forcing without uncertainties (other GreenHouse Gas 

(GHG), aerosol, volcanic, and solar forcing), and “missing forcing.” This missing 
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forcing term accounts for the uncertainty in the prescribed/parameterized radiative 

forcing and also represents forcings that are not included in other forcing terms in 

ACC2 (e.g. albedo forcing and mineral dust forcing). Furthermore, it reflects the 

interannual and decadal variability in the temperature records (except for the ENSO-

induced change after 1930). Missing forcing is treated as a parameter in each year. 

Further discussion on missing forcing is found in Methods. 

We obtain a best estimate of the uncertain parameters corresponding to the 

minimum of a cost function (equation (1) in Methods), in contrast to previous inversion 

studies which compute the Probability Density Function (PDF) of climate sensitivity. 

Calculating a PDF can be done for a problem addressing a small number of 

uncertainties but is infeasible for our approach, which considers more than one thousand 

uncertain parameters, including those representing missing forcing. 

We conduct two sets of simulations: 

1) We compare the standard ACC2 inversion (i.e., expressing radiative forcing 

uncertainty as missing forcing) with two other ACC2 inversions with alternative 

representations of radiative forcing uncertainty: one in which, similar to previous 

studies, it is expressed by an uncertain forcing scaling factor applied to the aerosol 

forcing, and a second that assumes no forcing uncertainty at all. We do not consider the 

climate-carbon cycle feedback in these cases in order to focus on the effect of radiative 

forcing uncertainty. 

2) We use the standard radiative forcing representation, but carry out two inversions in 

which the climate-carbon cycle feedback is either included or not, termed coupled or 

uncoupled inversion experiment, respectively. For further details, see Methods.  

For all setups, we calculate the relationship between the minimum value of the cost 

function and the value of climate sensitivity by performing a series of inversions by 

which climate sensitivity is fixed at values between 1°C and 10°C at intervals of 

0.25°C. The shape of this relationship indicates both the best estimate of climate 

sensitivity and the uncertainty of such an estimate. 

 

Results and Discussion  

Uncertainty in Radiative Forcing 
Figure 1 (unfilled plots) shows the cost function values for the first set of simulations. It 

indicates that the climate sensitivity is unlikely to be smaller than 2°C, in line with the 

results of the PDF studies. More importantly, if the forcing uncertainty is fully 

addressed as missing forcing, the cost function curve is almost completely flat at values 

of climate sensitivity above about 2°C. In this case, the inversion indicates little 

preference for any value of climate sensitivity in the range 2°C–10°C. In contrast, if the 

forcing uncertainty is represented as an uncertain scaling factor applied to a fixed 

temporal trend of aerosol forcing as in the PDF studies, the climate sensitivity appears 

far better constrained, particularly at high values. It is even better constrained if the 

uncertainty in the radiative forcing is not considered at all. Therefore, our analysis 

suggests that the well-defined peak of the PDF of climate sensitivity in former studies is 

a consequence of insufficient treatment of the historical development of radiative 
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forcing uncertainty. Including these uncertainties implies that climate sensitivity is 

much less constrained at the high end than previously thought. 

We can draw this conclusion even though our results are not expressed as PDFs 

as in previous studies. According to probabilistic inverse estimation theory (Tarantola, 

2005), our best estimate for climate sensitivity can be interpreted as the peak of the 

marginal posterior PDF for all the parameters. The previous studies cited above, on the 

other hand, present the marginal posterior PDF for climate sensitivity (obtained by 

integrating our marginal posterior PDF with respect to the parameters other than climate 

sensitivity). Thus, the two approaches reduce the full joint posterior PDF differently. 

Nevertheless, in our case, differences in the value of the cost function qualitatively 

indicate differences in relative likelihood because the cost function changes 

monotonically with respect to parameters (Figure S14 of Supplementary Information). 

In other words, flatter cost function curves mean less constrained PDFs. 

More in detail, Figure 2 presents radiative forcing and temperature time series 

resulting from missing forcing- and forcing scaling-based inversions. Figure 2.1 shows 

that low climate sensitivity is not supported even with the missing forcing approach 

because of the difficulty in explaining the warming in the late 20th century. Figure 2.2 

demonstrates that high climate sensitivity is not acceptable with the forcing scaling 

approach, which results in excessively strong cooling after large volcanic eruptions in 

the 19th century. Such results indicate that the forcing scaling approach is too inflexible 

to deal with the complexity in forcing uncertainty. 

Carbon Cycle Feedback 

If considering temperature and radiative forcing is insufficient to constrain climate 

sensitivity, including feedbacks with other Earth system components in the inversion 

may tighten the constraint, a possibility addressed by the second set of simulations. 

The cost function curves of the coupled and uncoupled inversions are both 

nearly flat at high values of climate sensitivity (two lower curves in Figure 1). So, 

despite the addition of climate-carbon cycle feedback, our inversion still almost equally 

accepts a wide range of high climate sensitivity. 

This result can be explained by examining the relative contributions of different 

sources of uncertainty to the cost function (Figure 3). Almost all sources display the 

same flat shape toward high climate sensitivity, with two exceptions: missing forcing in 

both coupled and uncoupled cases, which has a distinct minimum at a climate sensitivity 

of 2.5–3.0°C, and land use CO2 emissions in the coupled case, which decreases 

monotonically toward high climate sensitivity. Thus, Figure 3 suggests that in the 

uncoupled case, the uncertainty in climate sensitivity is large because about 80% of the 

cost function is derived from variables that do not contribute to discriminating among 

higher values of climate sensitivity. In the coupled case, the uncertainty in climate 

sensitivity is even slightly larger because, although the missing forcing and land use 

emission terms do discriminate among climate sensitivity values to some extent, they 

act in opposite directions. 

The time series in Figure 4 explain the decreasing land use CO2 emission 

residuals toward high climate sensitivity in Figure 3. In the early 19th century, the 
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atmospheric CO2 concentration records stabilized (Figure 4.2) due to the suppression of 

heterotrophic respiration at the low surface temperature caused by volcanic eruptions. 

However, the simulated respiration responses to volcanic eruptions are not sufficiently 

large (Figure 4.3), resulting in a cutoff of the land use CO2 emission (Figure 4.1). The 

eruption-induced decrease in the heterotrophic respiration is larger with higher climate 

sensitivity, leading to a smaller reduction in the land use CO2 emission. 

The results above depend on the prior estimates and their uncertainties of the 

land use CO2 emission and land CO2 uptake for the first 100 years of the inversion, 

which are linearly extrapolated from the later period. Thus, an improvement of data 

quality before 1850 would be necessary to improve the effectiveness of climate 

sensitivity estimation with a coupled model. 

Caveats 

We have not discussed ocean CO2 uptake as it turned out to be nearly insensitive to the 

temperature change in our simulations (Figure S1 of Supplementary Information). Also 

we have not discussed the atmospheric chemistry component because no temperature 

feedbacks to the atmospheric chemistry processes are included in the model and it 

therefore did not affect the results of our analysis. We assume a fixed estimate for the 

ocean diffusivity (Kriegler, 2005) because constraining the ocean diffusivity requires 

oceanic heat diffusion processes, which are not explicitly modelled in ACC2. Our 

estimate of the prior range for missing forcing is also uncertain, but the sensitivity 

analysis in Section S3 of Supplementary Information demonstrates that our overall 

conclusions hold under various possible assumptions. Our results are based only on a 

single temperature reconstruction (Jones et al., 1998; Mann and Jones, 2003) as our 

emphasis lies in considering radiative forcing uncertainty. 

Concluding Remarks 

The question still remains as to how to appropriately represent the forcing uncertainty, 

although it may ultimately depend on the specific research question. Our results support 

the idea of using the carbon cycle for climate sensitivity estimation. The interplay 

among the uncertainty estimates in the carbon cycle and climate systems encourages a 

holistic uncertainty analysis using an Earth system model with more complexity. 

Details in Methods 

Model 
We use ACC2, a global-annual-mean Earth system model comprising carbon cycle, 

atmospheric chemistry, and climate components. The ocean and land carbon cycle 

processes are represented by the respective four-reservoir box models tuned to Impulse 

Response Function models (Hooss et al., 2001; Joos et al., 1996). Thermodynamic 

equilibria for marine carbonate species ( , , and ) are dynamically 

computed and are sensitive to the ocean mixed layer temperature, providing temperature 

effect on ocean CO2 uptake. The temperature sensitivity of large scale ocean circulation 

)(CO2 aq −
3HCO −2

3CO

4  



 

is not accounted for, which is acceptable on the time scale of our model projections. 

CO2 fertilization for Net Primary Production and temperature-dependency of 

heterotrophic respiration are parameterized with the beta factor and Q10, respectively. 

ACC2 incorporates parameterizations of atmospheric chemistry processes (Joos et al., 

2001; WMO, 2003; IPCC, 2005) involving direct radiative forcing agents (CO2, CH4, 

N2O, O3, SF6, 29 species of halocarbons, sulfate aerosols (direct effect), carbonaceous 

aerosols (direct effect), all aerosols (indirect effect), and stratospheric H2O) and indirect 

radiative forcing agents (OH, NOx, CO, and VOC), including feedbacks of CH4 and 

N2O concentrations on their lifetimes. Volcanic (Ammann et al., 2003)  and solar 

(Krivova et al., 2007) forcings are prescribed. The calculation of surface air temperature 

is based on the Diffusion Ocean Energy balance CLIMate model (DOECLIM) 

(Tarantola, 2005), a land-ocean energy balance model. Note that ACC2 version 3.1
 

(Tanaka, 2008) that we use in this paper slightly differs from ACC2 version 3.0 (Tanaka 

et al., 2007) mainly in its treatment of Q10. Differences in the inversion results are not 

significant. 

Inversion 

The ACC2 inversion derives a best estimate of major uncertain parameters by 

synthesizing various knowledge on the Earth system including parameter estimates, 

observations, and physical-biogeochemical laws on the basis of the probabilistic inverse 

estimation theory (Tarantola, 2005). The parameters and data used in the ACC2 

inversion are summarized in Tables S1 and S2 of Supplementary Information. 

Our approach is concerned with the estimates obtained by optimization, 

corresponding to the minimum of the cost function  as follows: )(mS

⎟⎟
⎟
⎠
⎞

⎜⎜
⎜
⎝
⎛

⎟⎟⎠
⎞
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)(mig  is the forward model projection for data i  based on a set of parameter m .  and 

 are the total numbers of data and parameters, respectively.  and  denote 

measurement  and prior estimate of parameter 

a

b imesd , jpriorm ,

i j , respectively.  and  are one-

sigma uncertainty ranges for measurement  and for prior estimate of parameter 

id ,σ jm,σ
i j , 

respectively. In the framework of the probabilistic inverse estimation theory, the cost 

function is the negative of the argument of the exponential function expressing the 

marginal posterior PDF for all the parameters. We assume normal distributions for all 

the prior uncertainties of the parameters and data. It should be noted that all the 

parameters and data in the ACC2 inversions are treated independently, implying that fits 

for time series having strong autocorrelations are over-emphasized. 

Inverse calculations are performed using the local optimization solver 

CONOPT3 implemented in GAMS. The solutions for inversions are confirmed by 

performing the same inversions from different initial points. 

Inversions are performed from the year 1750 to 2000. Although the system is not 

completely equilibrated due to various natural forcings and internal dynamics, we made 

a steady-state assumption in 1750 on the ground that the energy-intensive machinery, 
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the key driver for the global warming, emerged in the early 18th century and also that 

the land use CO2 emission has already been substantial in magnitude by mid 19th 

century. 

Missing Forcing 

The prior estimate of the missing forcing is assumed to be 0.0 W/m
2
 throughout the 

inversion period. The 2σ prior uncertainty range is assumed to be constant at 0.5 W/m
2
 

before 1900 primarily to explain the natural variability in the temperature (rationales 

explained below). Then the uncertainty range increases linearly to 1.0 W/m
2
 in 2000 to 

account mainly for the uncertainty in the aerosol forcing, which is consistent with the 

corresponding IPCC range (IPCC, 2007, Figure SPM.2). The prior uncertainty range of 

the missing forcing is assumed to be larger by four-fold when volcanic forcing is 

stronger than -0.5 W/m
2
 in consideration of associated processes not resolved in the 

model. 

Below are the rationales for the 2σ prior missing forcing range before 1900 

(±0.5 W/m
2
). Our model simulations indicate that a constant radiative forcing of at least 

0.5 W/m
2
 is required to produce a temperature rise of 0.5°C on a decadal time scale 

with various climate sensitivity (Figure S5 of Supplementary Information). We assume 

that natural variability of the global-mean temperature is at most 0.5°C, based on the 

followings: 1) The global-mean surface temperature has risen about 0.5°C in the first 

half of the 20th century. Attribution/detection studies have so far not agreed upon 

whether such warming was due to natural variability or anthropogenic interference. 2) 

The temperature projection in the 1000-year control run of Community Climate System 

Model (CSM-1.4) (a coupled GCM) indicates a temperature variability of about 0.5°C 

(Doney et al., 2006). 

Coupled/Uncoupled Inversion Setups 

The coupled inversion experiment uses the standard inversion setup, where the climate 

component is fully coupled with the ocean and land carbon cycle components, so that 

the feedback between these Earth system components is fully accounted for. More 

specifically, in ACC2 this feedback is acting via the following two loops: a) 

Thermodynamic equilibria for the marine carbonate species ( , , and 

) depend on the ocean mixed layer temperature (linearly related to the ocean 

surface air temperature), which in turn controls the CO2 uptake from the atmosphere, 

thereby influences indirectly the ocean surface air temperature. b) The land surface air 

temperature influences heterotrophic respiration of the soil, and thus the land CO2 flux 

to the atmosphere, thereby indirectly feeding back on the land surface air temperature. 

In the second experiment, uncoupled inversion experiment, this climate-carbon cycle 

feedback has been suppressed, by setting artificially the temperature as seen by ocean 

and land carbon cycle fixed to its preindustrial value. CO2 exchange between the three 

compartments atmosphere, ocean, and land is thus uncoupled from changes in surface 

air temperature in this second type of experiment. 

)(CO2 aq -
3HCO

-2
3CO
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Figures  
Figure 1. Cost function in the ACC2 inversions under different treatments to radiative 

forcing uncertainty and climate-carbon cycle feedback 

Final values of the cost function are computed by optimizations with climate sensitivity 

fixed at values between 1°C and 10°C at intervals of 0.25°C. Each plot represents a 

unique inversion result. In square brackets, best estimates of climate sensitivity are 

shown.  

 

 

 

Figure 2. Comparison of the results of ACC2 inversions using missing forcing- and 

forcing scaling-approach 

The figures show the results from the uncoupled inversions using the missing forcing- 

and forcing scaling-approach with climate sensitivity of 1, 3, 5, and 10°C. The prior 

missing forcing is 0 W/m
2
 over the entire period. The forcing scaling factor is estimated 

to be 0.045, 0.999, 1.214, and 1.398 in the forcing scaling-based inversions with climate 

sensitivity of 1, 3, 5, and 10°C, respectively. Measurements in Figure 2.2 are 

compilation of temperature reconstruction (Jones et al, 1998; Mann and Jones, 2003) 

and instrumental records (Jones et al., 2006). Insert of Figure 2.2 shows the “residuals,” 
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i.e. the difference between prior and posterior values. The residuals are calculated such 

that the mean measurement during the period 1961-1990 is equal to the corresponding 

posterior mean. Measurements shown in the main figure are for the missing forcing-

based inversion with climate sensitivity of 3°C. Note that the prior uncertainty ranges 

for the missing forcing and temperature change are assumed four times larger when 

volcanic forcing is stronger than -0.5 W/m
2
. 
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Figure 3. Various contributions to the cost function in the ACC2 coupled and 

uncoupled inversions 

Temporal sums of the squares of the residuals weighted by the associated prior 

uncertainties (σ) are shown. They are obtained from the coupled and uncoupled 

inversions with climate sensitivity fixed at values between 1°C and 10°C at intervals of 

0.25°C. Each plot represents a unique inversion result. 
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Figure 4. Comparison of the ACC2 coupled and uncoupled inversion results 

Shown in the figures are the coupled and uncoupled inversion results for optimal 

climate sensitivity (4.04°C and 3.37°C, respectively). Note that the prior uncertainty 

range for the atmospheric CO2 concentration is assumed four times larger when 

volcanic forcing is stronger than -0.5 W/m
2
. More details of the prior for the land use 

CO2 emission (Houghton, 2003), atmospheric CO2 concentration (Etheridge et al., 1996; 

Keeling and Whorf, 2005), and land CO2 uptake (Friedlingstein et al., 2006) are shown 

in Tables S1 and S2 of Supplementary Information. 
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SUPPLEMENTARY INFORMATION 

S1. INTRODUCTION AND SUMMARY 

This Supplementary Information section provides in-depth analyses to support our inversion 

methodology and conclusions in the main article. First, we show the validity of the ACC2 inversion 

results based on their qualitative interpretation. Second, we demonstrate that the conclusions in the 

main article hold under various assumptions. 

 Two conclusions in the main article are the followings: 1) It is of paramount importance to 

reconsider how to deal with forcing uncertainty in inversion-based climate sensitivity estimation. 2) 

Even when the carbon cycle feedback is provided in the inversion, the uncertainty in the historical 

carbon budget makes it difficult to produce a tighter constraint on climate sensitivity estimation. 

The conclusions above rest on several assumptions. Assumptions that we explicitly look at 

are as follows. First, the prior missing forcing uncertainty presumed in the ACC2 inversion is 

assumed based on the early 20th-century warming and the natural variability of a GCM control run 

(Doney et al., 2006), but uncertainty ranges in various radiative forcings are not yet well-established 

(IPCC, 2007, p.4). Second, we assume that the prior uncertainty range for land use CO2 emission is 

twice as large as the corresponding estimate of Houghton (2003) because the estimate of land use 

CO2 emission is different depending on the approach (bottom-up vs. inversion) and also influenced 

by the uncertainty in the global carbon budget (e.g. missing carbon flux such as soil erosion (Lal, 

2005)). Third, ACC2 employs the volcanic forcing of Ammann et al. (2003) among others (e.g. 

Bertrand et al., 2002; Crowley et al., 2003). The estimate of volcanic forcing depends on the ice 

cores used, interpretation of the records, and estimation methodology (e.g. scaling from aerosol 

optimal depth to radiative forcing). Fourth, all the parameters and data are assumed to be 

independent – autocorrelations are not taken into account in our inversion setup. 

Furthermore, there are statements in the main article that can be checked with additional 

analyses. Regarding the composition of missing forcing, relevant sensitivity analyses provide some 

insight. Also, further sensitivity analyses can substantiate our claim that the cost function curves are 

qualitatively comparable with PDFs. 

This Supplementary Information section is organized as follows. In Section S2, we discuss 

the main ACC2 inversion results in more detail. Section S3 aims to strengthen the first main 

conclusion by looking at the influence of prior forcing uncertainty to the inversion results. Section 
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S4 is to support the second main conclusion by investigating how the inversion results are affected 

by the presupposed prior land use CO2 emission range and volcanic forcing. In Section S5, we 

discuss the implications of other key assumptions to the main conclusions: namely, presupposed 

ocean diffusivity and prior climate sensitivity. In Section S6, a brief discussion on the posterior 

missing forcing is provided. Then we look at how the missing forcing is affected by prescribed 

aerosol forcing, prescribed volcanic forcing, and ENSO-driven temperature variability. Section S7 

aims to show the relevancy of our cost function curves to PDFs on the basis of the sensitivity of the 

cost function value to major parameters (beta, Q10, and forcing scaling factor). Lastly in Section S8, 

we analyze the implications of the independence assumption of the residuals – specifically, our 

analysis investigate how the autocorrelations in temperature residuals influences the first main 

conclusion. 

S2. FULL RESULTS OF THE MAIN ACC2 INVERSIONS 

In this section, full results of the main ACC2 inversions are shown. We demonstrate that the 

inversion results can be meaningfully interpreted, supporting the validity of the inversion results. We 

begin with overall discussion of the inversion results (Section S2.1) and discuss problems for 

statistical tests (Section S2.2). This is followed by detailed accounts for the land use CO2 emission in 

the late 20th century (Section S2.3), global estimate of Q10 (Section S2.4), temporal suspension of 

the atmospheric CO2 concentration rise in the mid 20th century (Section S2.5), terrestrial biosphere 

response to volcanic eruptions (Section S2.6), and optimal climate sensitivity (Section S2.7). 

S2.1. Overall Discussion 

Visual inspection of the time series (Figure S1) indicates that in the coupled and uncoupled inversion 

results, the overall fits to the observations are fairly good in comparison to the associated prior 

uncertainty ranges. All the posterior parameter estimates (Table S4) do not substantially depart from 

their prior estimates, supporting the validity of the inversion results. Exceptions are the land use CO2 

emission around 1991 and Q10, which are discussed in Sections S2.3 and S2.4, respectively. It had 

also been demonstrated that the fits for various time series has been drastically improved, compared 

to the results of forward simulation in which all the parameters are fixed at their prior estimates 

(Tanaka, 2008, Figure 4.1). 

 The final values of the cost function are nearly the same in the coupled and uncoupled 

inversions (371.1 and 365.1, respectively (Table S3)) – however, it is substantially larger in the 

forcing scaling-based inversion (607.0 (Table S3)). Such a large cost function value stems from the 

temperature misfit, in particular the short-term changes due to the natural variability and volcanic 

cooling (Figure S2). In the forcing scaling-based inversion, the squared weighted residuals for 
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temperature account for nearly 70% of the cost function. The result here indicates that the forcing 

scaling approach is not sufficient to explain the observed temperature change. 

S2.2. Problems with Statistical Tests 

Validation for the ACC2 inversion results relies only on qualitative examinations. A χ2
 test, which is 

designed to evaluate the size of residuals, is not a proper statistical validation for our problem due to 

the following two reasons: 

First, a χ2
 test can be used only for a linear model. Our model ACC2 is moderately 

nonlinear as a whole, as a result of the combined effect of several nonlinear processes such as CO2 

fertilization, temperature feedback to the ocean and land CO2 uptake, concentration-radiative forcing 

relationships for CO2, CH4, and N2O, and ocean heat uptake. While CO2 fertilization dampens the 

rising atmospheric CO2 concentration, the temperature feedback to the ocean and land CO2 uptake 

further amplifies it. The CO2 concentration-radiative forcing relationship has a damping effect for 

CO2-induced warming as relevant absorption bands are filled with rising CO2 concentration. Ocean 

heat uptake delays the warming (Figure S5) – the entire warming effect emerges after several 

hundred years. 

Second, a large number of correlations among the residuals (inserts for Figures S1 and S2; 

Figure S3) is a problem to get a meaningful result from a χ2
 test. All the parameters and data are 

assumed to be independent in the ACC2 inversions. 

S2.3. Land Use CO2 Emission in the Late 20th Century 

To reproduce the observed atmospheric CO2 concentration in the late 20th century, the posterior 

estimates of the land use CO2 emission (Houghton, 2003) are substantially smaller than the prior 

even with strong terrestrial biospheric uptake. The posterior land use CO2 emission (Figure S1.2) is 

lower than the corresponding prior for the last 60 years. The posterior estimate of the beta factor is 

0.59, which is high in the prior range between 0.1 and 0.7. The high beta factor is in line with 

Friedlingstein et al. (2006) showing strong CO2 fertilization in most process-based terrestrial 

biosphere models. 

It is important to point out that such inversion results should not be regarded merely as an 

indication for low land use CO2 emission – they should rather be taken as an overall uncertainty in 

the historical carbon budget. Structural uncertainty in the carbon cycle is reflected to the posterior 

land use CO2 emission because of its relatively large prior uncertainty range. 

It should be noted that the prior uncertainty range of the land use CO2 emission is assumed 

to be twice as large as the range suggested in Houghton (2003). Without such an adjustment, the 

inversion produces large residuals (beyond the 2σ prior uncertainty ranges) for land use CO2 

emission around 1991 (Figure S7.2a) and for the atmospheric CO2 concentration between 1930 and 

1940 (Figure S7.3a). The reasons for such an adjustment are three-fold: 1) Previous inversion studies 

(e.g. Gurney et al., 2002) indicate smaller estimates of land use CO2 emission than Houghton’s 
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estimates. 2) In the inversion results, the land use CO2 emission reflects the imbalance of the carbon 

budget due to the missing carbon cycle processes such as soil erosion, which is estimated to be -1.5 

to +1.0 GtC/year (Lal, 2005). 3) Processes related to water cycle are not described in ACC2 (Section 

S2.4). 

S2.4. Global Estimate of Q10 

The posterior estimate of Q10 is 1.18, lying outside of the 2σ prior uncertainty range between 1.5 

and 2.5 (Table S2), which is based on the compilation of field measurements (Table 2 in Tjoelker et 

al. (2003)) and the observational constraint for GCM (Jones and Cox, 2001). It is also significantly 

lower than 2.0, which is typically assumed in biosphere models. 

The low Q10 points to structural uncertainty – the low Q10 reflects the biospheric response 

not only to the temperature change but also to the soil moisture change, which is not described in 

ACC2. With global warming, the contrast between wet and dry regions will increase as all GCMs 

demonstrate (Wang, 2005). Precipitation and probably also soil moisture will increase in most of the 

presently wet regions and decrease in the subtropical regions. More water in presently wet soils will 

decrease heterotrophic respiration because of the oxygen limitation while less water in presently dry 

soils will also reduce heterotrophic respiration because of the water limitation. Thus, the temperature 

effect and the soil moisture effect on the heterotrophic respiration cancel out each other, resulting in 

the low Q10. 

S2.5. Temporal Suspension of the Atmospheric CO2 Concentration Rise 

The influence of decadal variability shows up in the residuals for the atmospheric CO2 concentration. 

An example is the plateau between 1940 and 1960. During this period and thereafter, the temperature 

rise also stalls. Mechanisms that led to this phenomenon are in dispute. An inversion study 

(Trudinger et al., 2002) shows that the slowdown of the atmospheric CO2 concentration rise is 

caused by the change in the large-scale ocean circulation. However, such a halt does not appear in 

the prior ocean CO2 uptake based on C
4
MIP runs (Figure S1.4). 

S2.6. Terrestrial Biosphere Response to Volcanic Eruptions 

Several strong volcanic forcing between 1750 and 1850 are offset by positive missing forcing when 

the corresponding temperature drops in reconstruction are relatively small (Figures S1.10 to S1.12). 

The mismatch between the volcanic forcing and reconstructed temperature is explained by the 

diffuse radiation hypothesis (Robock, 2005): Photosynthesis is enhanced by diffuse radiation 

produced from the forward scattering of the solar radiation due to stratospheric sulfate aerosols. 

However, evidences for the diffuse radiation hypothesis are not yet conclusive as there are large 

discrepancies among different volcanic forcings (Section S4.2) and temperature reconstructions 

(Jones and Mann, 2004, Figures 7 and 8). 

We briefly discuss two examples below. After the Tambora eruption in 1815, no 
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temperature drop appears in the reconstruction. If the diffuse radiation hypothesis is true, tree ring 

proxies used for the temperature reconstruction would be biased by the plant growth enhanced by the 

diffuse radiation. Then, the temperature would have actually been lower after the eruption than what 

is directly indicated by the proxies. 

Following the Pinatubo eruption in 1991, the growth of the atmospheric CO2 concentration 

slowed down. Our inversion results indicate that the suppression of the heterotrophic respiration due 

to the cooling was not sufficient to explain the observed CO2 concentration trend, resulting in a 

drastic reduction in the land use CO2 emission (Figure S1.2). If the diffuse radiation hypothesis is 

true, the unusually low land use CO2 emission can be attributed to the photosynthesis enhancement 

due to increased diffuse radiation (Gu et al., 2003). 

S2.7. Optimal Climate Sensitivity 

Differences in the optimal climate sensitivity obtained from different approaches can be explained 

by looking at residuals. 

The best estimate of climate sensitivity is larger in the coupled inversion (4.04°C) than in 

the uncoupled inversion (3.37°C). The higher optimal climate sensitivity in the coupled inversion is 

due to the declining trend in the residuals for land use CO2 emission toward high climate sensitivity 

(Figure 3 of the main article and the associated discussion). 

The optimal climate sensitivity is higher in the forcing scaling-based inversion (3.77°C) 

than in the missing forcing-based inversion (3.37°C). Figure S4 shows that this is primarily caused 

by the residual curve for the surface air temperature change, which dominates the change in the cost 

function. The temperature residual curve for the forcing scaling-based inversion has a distinct 

minimum at climate sensitivity of 3.5–4.0°C. 

S3. ASSUMPTIONS FOR PRIOR FORCING UNCERTAINTY 

The prior uncertainty of radiative forcing is uncertain (a problem of uncertainty’s uncertainty). In 

this section, we first discuss numerical simulations that are used to derive the standard prior 

uncertainty range for missing forcing. And then we look at the sensitivity of the inversion results to 

the prior uncertainty range of missing forcing. 

 The prior forcing uncertainty range assumed in the ACC2 inversion can be supported by 

model calculations. The 2σ prior missing forcing range of 0.5 W/m
2
 is assumed before 1900 in order 

to account for the temperature variability of 0.5°C under various climate sensitivity (up to 6.5°C as 

in its 2σ prior range). Such temperature variability is indicated from the early 20th-century warming 

and the natural variability of a GCM control run (Doney et al., 2006). Figure S5 shows that, if the 

climate sensitivity is 6.5°C, a sustained perturbation of 0.5 W/m
2
 leads to a warming of about 0.5°C 
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over 50 years. 

Cost function curves are sensitive to the prior range for missing forcing (Figure S6). If we 

reduce the prior missing forcing range by 50%, the cost function curve is not only shifted up over the 

entire range of climate sensitivity, but also tilted up toward high climate sensitivity (Figure S6.1). 

The temperature time series (Figure S6.3) show that such a tilt stems mainly from the growing misfit 

for the temperature after volcanic eruptions in the early 19th century. The slope toward high climate 

sensitivity is coincidentally similar to those for the forcing scaling approach. With smaller prior 

forcing uncertainty range, the slope eventually converges to that for no forcing uncertainty. The cost 

function curve for the forcing scaling approach is not sensitive to the prior uncertainty range for the 

forcing scaling factor, indicating that the single parameter of forcing scaling factor does not have a 

significant impact on the cost function. 

S4. ASSUMPTIONS RELATED TO CARBON CYCLE FEEDBACK 

The second main conclusion on carbon cycle feedback rests on the prior assumptions for the land use 

CO2 emission and also on the prescribed volcanic forcing selected among others. Volcanic eruptions 

have a non-negligible perturbation to the global carbon cycle. In this section, we demonstrate that the 

inversion results are influenced by the prior land use CO2 emission – nonetheless, the second main 

conclusion remains the same. 

S4.1. Prior Uncertainty in Land Use CO2 Emission 

The uncertainty range for land use CO2 emission is uncertain and is assumed twice as large as the 

uncertainty range suggested by Houghton (2003) (Section S2.3). We discuss the sensitivity of the 

inversion results to prior uncertainty range for land use CO2 emission. 

When a 50% smaller prior range for land use CO2 emission (equivalent to Houghton’s 

estimate) is assumed, the cost function value of the coupled inversion becomes substantially smaller 

than that of the uncoupled inversion over the entire range of climate sensitivity (Figure S7.1). The 

larger difference between the coupled and uncoupled results stems from the carbon cycle in the early 

19th century. The cessation of the CO2 concentration rise during the period 1800-1850 is explained 

by the suppression of soil respiration during the cooling periods following large volcanic eruptions. 

Without the climate-carbon cycle feedback, the slump of the CO2 concentration rise is reproduced by 

the reduction in the land use CO2 emission. This results in a larger penalty in the cost function 

particularly when the prior range of the land use CO2 emission is assumed 50% smaller than the 

standard (Figure S7.2a). The opposite but less pronounced results are found when the prior 

uncertainty of land use CO2 emission is assumed 50% larger than the standard (Figure S7.2c). 

Using 50% smaller prior range for land use CO2 emission is problematic. This is indicated 
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from the large residuals for land use CO2 emission around 1991 (Figure S7.2a) and for the 

atmospheric CO2 concentration between 1930 and 1940 (Figure S7.3a). Under such an assumption, 

the inversion is forced to resolve prior information in conflict. In light of the overall uncertainty in 

the global carbon budget (Section S2.3), it is fair to assume the standard prior range (twice as large 

as the Houghton’s range). 

It is worth noting that in the uncoupled inversion results the best estimate of the climate 

sensitivity is nearly unaffected from the change in the prior uncertainty range for land use CO2 

emission. The inversion in the carbon cycle component hardly influences the inversion in the climate 

component in the absence of the climate-carbon cycle feedback. This result itself is interesting as it 

suggests that uncertainty in the carbon cycle system can hardly be seen as a problem from the 

climate system – the uncertainties in radiative forcing and climate sensitivity dwarfs the uncertainties 

in the carbon cycle. This is so unless a feedback from climate to carbon cycle is provided. 

S4.2. Volcanic Forcing 

Estimates of volcanic forcing depend on the ice cores used, interpretation of the records, and 

estimation methodology (e.g. scaling from aerosol optimal depth to radiative forcing) as indicated by 

the inconsistency among different volcanic forcing estimates (e.g. Ammann et al., 2003; Bertrand et 

al., 2002; Crowley et al., 2003). We investigate whether our finding based on Ammann’s volcanic 

forcing is still valid when different volcanic forcing is used. 

Inversion results based on the three different volcanic forcings are compared in Figure S8. 

Missing forcing shows marked differences before 1930 (Figures S8.5 and S8.6), but this does not 

affect our conclusions on forcing uncertainty. Similar results can be seen in the carbon cycle (Figures 

S8.2 to S8.4), supporting our conclusion on carbon cycle feedback. The trend of the cost function 

curve is similar among all the inversion results (Figure S8.1). The climate sensitivity is estimated 

higher for the coupled inversion in all the three cases. The best guess of climate sensitivity is diverse 

in particular in the coupled cases, ranging from 3.37°C to 4.44°C. 

S5. OTHER KEY ASSUMPTIONS IN THE ACC2 INVERSION 

In the previous sections we have analyzed how the inversion results are influenced by the prior 

missing forcing range, the prior land use CO2 emission range, and the prescribed volcanic forcing. In 

this section, we discuss the influences from remaining key assumptions: namely, the presupposed 

ocean diffusivity and the prior climate sensitivity. 

S5.1. Ocean Diffusivity 

Ocean diffusivity is a major uncertainty in the climate system. However, we assume a fixed estimate 
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for ocean diffusivity (0.55 cm
2
/s) based on Kriegler (2005, Figure 2.8) because ocean diffusivity 

cannot be well-constrained simultaneously with climate sensitivity in our inversion setup, which 

does not utilize ocean heat distribution data (Levitus et al., 2000). We look into how our results are 

affected when assuming different ocean diffusivity (1.0 cm
2
/s and 2.0 cm

2
/s). 

The results of such a sensitivity analysis are shown in Figure S9. The influence of the 

ocean diffusivity to the inversion results is systematic and small (Figure S9.1). Time series in Figures 

S9.2 and S9.3 are nearly the same. Thus, our main findings are not affected by the treatment of ocean 

diffusivity. 

S5.2. Prior Climate Sensitivity 

It has been argued that prior assumptions highly influence inversion results (Tol and de Vos, 1998; 

Frame et al., 2005). We investigate the sensitivity of the inversion results to different prior 

assumptions for climate sensitivity. The prior 2σ uncertainty range adopted in the standard inversion 

is 0.5°C–6.5°C. The prior mean is 3.5°C as normal distributions are assumed for all the parameters 

and data in the ACC2 inversion. We try our inversion for the 2σ uncertainty range of 1.5°C–4.5°C, a 

conventional range indicated by GCMs (IPCC, 2001, Chapter 9). The 2σ uncertainty range of 

0.5°C–10.5°C is also tested, a conservative range emphasizing the long tail indicated by PDFs for 

climate sensitivity (e.g. IPCC, 2007, pp.798-799). 

The resulting change in the best estimate of climate sensitivity is, however, not substantial 

(Figure S10). One reason is that in our approach the time-variant parameters are dominant in the cost 

function over constant parameter such as climate sensitivity. The analysis here suggests that our 

main conclusions are not significantly influenced by the prior climate sensitivity. 

S6. MISSING FORCING 

Missing forcing is “catch-all” forcing, comprising mainly three elements as discussed in the main 

article. First, we provide a brief discussion on the posterior missing forcing. Then we investigate 

how the missing forcing is influenced by aerosol forcing, volcanic forcing, ENSO-induced 

temperature variability to get an insight into the composition of missing forcing. 

S6.1. Posterior Missing Forcing 

The missing forcing is punctuated by large spikes corresponding to volcanic eruptions. Most of these 

spikes are positive and some others negative, depending on how are the mismatches between the 

volcanic forcing and the reconstructed temperature. The missing forcing after 1900 is highly variable, 

reflecting the interannual variability of the temperature records. The fluctuation becomes larger 

toward present as the prior temperature uncertainty gets smaller with extensive observation network 
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put into place and also as the prior uncertainty of the missing forcing becomes larger to reflect 

aerosol forcing uncertainty. The average missing forcing over the last 50 years is about -0.12 W/m
2
, 

an indication that the aerosol forcing used in ACC2 is slightly underestimated in magnitude. 

S6.2. Influence from Aerosol Forcing 

We look at how the uncertainty in aerosol forcing is reflected to missing forcing. The aerosol forcing 

is a major uncertainty in the climate system (IPCC, 2007, p.32). In ACC2, the aerosol forcing is 

represented by the following three types: sulfate aerosol forcing (direct effect), carbonaceous aerosol 

forcing (direct effect), and all aerosol forcing (indirect effect) (Table 2.1 of Tanaka (2008)). The 

direct sulfate aerosol forcing and indirect aerosol forcing are calculated based on the respective 

parameterizations given as a function of SO2 emission. The carbonaceous aerosol forcing is given as 

a function of CO emission. These three types of aerosol forcings are summed up to 1.3 W/m
2
 in year 

2000. We perform a sensitivity analysis of the inversion results by assuming 50% weaker total 

aerosol forcing over the entire period and also by assuming 50% stronger total aerosol forcing. 

The results of such a sensitivity analysis are in Figure S11, showing that the missing 

forcing acts to cancel out the hypothesized change in the magnitude of aerosol forcing. The offset 

between the aerosol forcing and the missing forcing is only partial – there are large differences in the 

posterior estimates of climate sensitivity (1.95°C for 50% weaker aerosol forcing; 3.37°C for 

standard aerosol forcing; and 6.71°C for 50% stronger aerosol forcing). Final values of the cost 

function are, however, similar (368.8 for 50% weaker aerosol forcing; 371.7 for standard aerosol 

forcing; and 386.9 for 50% stronger aerosol forcing). 

S6.3. Influence from Volcanic Forcing 

We check how the uncertainty in volcanic forcing (Section S4.2) is reflected to the missing forcing. 

We perform a sensitivity analysis of the inversion results to volcanic forcing (Ammann et al., 2003; 

Bertrand et al., 2002; Crowley et al., 2003). 

The results of the sensitivity analysis are in Figure S12. It is demonstrated that the missing 

forcing is highly influenced by the volcanic forcing. It is evident in particular before 1900, but for 

the last 100 years it is less explicit as it is superimposed by the influence from the interannual 

variability in the temperature records. Mostly missing forcing turns strongly positive, 

contemporaneous with volcanic eruptions, which can be interpreted as corrections for the volcanic 

forcing to reproduce the reconstructed temperature. Note that such corrections are not always 

positive (e.g. 1890 in Ammann’s volcanic forcing). The insert of Figure S12.1 shows that the missing 

forcing is all contained within the 2σ prior boundary, except for the period influenced by the 

Tambora eruption in 1815 in Crowley’s volcanic forcing. 

S6.4. Influence from ENSO-driven Temperature Variability 

We look into how the missing forcing is influenced by interannual variability in the temperature data. 
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In the standard ACC2 inversion setup, the ENSO-induced interannual variability in the temperature 

records is removed by using a linear regression as a function of an annualized Southern Oscillation 

Index (SOI) (Tanaka, 2008, Section 3.5.1). The annualization includes a 4-month lead because the 

temperature variability is statistically best explained by SOI with 4-month lead (Kriegler, 2005, 

Figure 2.4; our pre-analysis). The ENSO-related correction on the temperature records is applied 

only after 1930 due to the credibility of the index. We perform an inversion without using the 

ENSO-related correction on the temperature records and compare it with the standard results. 

The two inversion results are compared in Figure S13, showing that the missing forcing 

reflects the interannual variability of the temperature records. The insert of Figure S13.2 

demonstrates that, when a strong El Niño or La Niña event occurs, the temperature fit is better with 

the correction for ENSO-induced temperature variability. Without the ENSO-related correction, the 

missing forcing is adjusted such that it artificially produces the ENSO-induced temperature 

variability (insert of Figure S13.1). 

S7. COST FUNCTION CURVE VS PDF 

In the main article, we argue that the cost function curves for climate sensitivity (consisting of 

different optimization results) are qualitatively indicative of PDFs for climate sensitivity in literature 

because the cost function changes monotonically with parameters and it does not show other local 

optima or extreme irregularity. We now demonstrate this by a sensitivity analysis of the cost function 

curves with respect to major influential parameters. 

The results in Figures S14.1 to S14.4 show that the changes in the cost function curves are 

not so drastic or irregular for middle to high climate sensitivity. These results suggest that cost 

function curves are comparable to PDFs for middle to high climate sensitivity. Although rigorous 

proofs for the statements above require extensive parameter sampling and mathematical derivations, 

our sensitivity analysis provides a first-order indication that the cost function curves are qualitatively 

comparable to PDFs for climate sensitivity. 

S8. AUTOCORRELATIONS 

The residuals for the data and parameters in the ACC2 inversion are assumed to be independent 

without accounting for their autocorrelations. Although such an assumption implies that fits for time 

series having strong autocorrelations are over-emphasized, the autocorrelations are neglected 

altogether in the ACC2 inversion because of the difficulty in fully estimating them. However, 
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Ricciuto et al. (2008) demonstrate that neglecting autocorrelations result in overconfidence in 

parameter estimation by using an inversion setup for a simple global carbon cycle and climate model. 

It is also statistically known that the ignorance of autocorrelations biases the estimation (e.g. Zellner 

and Tiao, 1964). Thus, in this section, we quantitatively assess how the solutions of the ACC2 

inversions are influenced from the ignorance of autocorrelations. Our analysis focuses on the 

autocorrelations in the surface air temperature residuals and their impacts on the cost function curves 

in Figure 1 of the main article. 

S8.1. Implementing AR(1) Model in the Cost Function 

The following explains how the autocorrelations in temperature residuals can be taken into account 

in the ACC2 inversion. The solution of the ACC2 inversion corresponds to the minimum of the cost 

function  (equivalent to equation (1) of the main article): )(mS
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where  and  are the residuals for data i and parameter j. idr , jmr ,

 In order to account for the autocorrelations in temperature residuals, we use an AR model 

of 1st-order (AR(1)), a simplest method to describe an AR process. Collins et al. (2001) demonstrate 

that the global-mean surface air temperature variability of the 1000-year control run of HadCM3 can 

be described as an AR(1) process. Kriegler (2005, p.43) concludes that based on several statistical 

tests, an AR(1) model is sufficient to describe the weather-driven variability of SST residuals during 

the period 1870-2002 except for ENSO. However, it is not clear how the decadal variability 

appeared in the residuals can be explained just with an AR(1) model. Eden et al. (2002) demonstrate 

that AR(5) provides a best fit to explain the variability in the mix layer temperature of the North 

Atlantic. Nevertheless, we use the AR(1) representation as a first cut and check the residual 

spectrums to see whether the AR(1) model removes the autocorrelations in temperature residuals. 

An AR(1) model (e.g. Box and Jenkins, 1970, pp.56-58; von Storch and Zwiers, 1999, 

p.204) between temperature residuals can be described as 

 24



 , kdkdkd rr ,,1, εβα ++⋅=+ 250,,2,1 L=k      (S3) 

where α  and β  are the propagator and constant, respectively.  and  are temperature 

residuals. Index numbers 1-251 are assigned to temperature residuals in years 1750–2000.  is 

Independently and Identically Distributed (IID) (thus, white noise) and follows a normal distribution 

with a mean of zero and a standard deviation of . By further assuming 

kdr , 1, +kdr

kd,ε

εσ 0=β , the AR(1) model 

is simplified to 

 .      (S4) kdkdkd rr ,,1, εα +⋅=+

 The AR(1) model is implemented to the cost function  as follows: )(mS
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The first term on the right side of equation (S5) account for the squared weighted residual for the 

temperature residual in 1750. The autocorrelation for this start year is not considered, but this does 

not significantly affect the results because the time series are relatively long in our inversion. For the 

temperature residuals from 1751 onward, autocorrelations are taken into account (second term in 

equation (S5)). The standard deviation  is used for all the temperature residuals instead of the 

prior uncertainty for temperature change, . Residual terms of the other data and parameters are 

unchanged (third and fourth terms). The last term on the right side of equation (S5) is introduced for 

the new parameter 

εσ
kd,σ

α . The implementation here is similar to the form of the likelihood function for 

an AR(1) process (e.g. Box and Jenkins, 1970, pp.274-284; von Storch and Zwiers, 1999, 

pp.257-258). 

S8.2. Estimation of AR(1) Propagator 

This section discusses the estimation problem of the propagator α  and the standard deviation  

in equation (S4). For our exercise in this section, we assume a fixed value of 0.45 for propagator 

εσ
α , 

the maximum likelihood estimate for the SST residuals (except for ENSO) during the period 

1870-2002 (Kriegler, 2005, p.40). We also assume a value of 0.078°C for the standard deviation  

(Kriegler, 2005, p.36). This set of estimates is assumed for all the ACC2 inversion cases when the 

AR(1) model is introduced. As a result of such an assumption, the propagator 

εσ

α  is no longer 

considered as a new parameter in the inversion. Thus, the last term in equation (S5) is dropped and 

the cost function including the AR(1) model can be rewritten as 
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Our approach stated above is in contrast to other studies in which the propagator for the AR(1) 
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model is treated similar to other parameters and optimized in the inversion (e.g. Ricciuto et al., 2008). 

The value of propagator is indeed specific to the inversion result. However, we dare to take this 

approach due to a problem for interpretation as discussed below. 

To interpret the implemented AR(1) model from the perspective of inverse estimation, 

equation (S5) is reformulated as follows: 
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Only the changes related to temperature residual  are explicitly shown in equation (S7). In all 

the three terms on the right side of equation (S7), the propagator 

kdr ,

α  appears. If the propagator α  

is optimized in the inversion similar to other studies, equation (S7) indicates that the prior 

uncertainty for  (and also the associated covariances), which must be fixed before the inversion, 

is optimized to minimize the cost function. Optimizing a prior uncertainty in the inversion is not 

compatible with the inverse estimation theory (e.g. Tarantola, 2005) even though numerical 

computation is feasible. 

kdr ,

S8.3. Experimental Design 

By using the AR(1) model discussed above, we re-calculate the three cost function curves in Figure 1 

of the main article: namely, the missing forcing-based inversion, the forcing scaling-based inversion, 

and the inversion assuming no forcing uncertainty. Similar to other sensitivity analyses, the 

relationship between the value of the cost function and the value of climate sensitivity is calculated 

by performing a series of inversions by which the climate sensitivity is fixed at values between 1°C 

and 10°C at intervals of 0.25°C. By comparing with the original inversion results without the AR(1) 

model, we investigate if the conclusion of the importance of forcing uncertainty can still be drawn. 

Except for the AR(1) model implementation, other parts of the model and the inversion 

setup are kept the same. Some detailed notes for the methodology follow. The standard deviation 

 is assumed to be larger by a factor of 4 when volcanic forcing is stronger than -0.5 W/m
2
 similar 

to the treatment for the original prior uncertainty of temperature change (Tanaka, 2008, Section 

3.5.2). The ENSO-driven temperature variability is also statistically considered as in the standard 

inversion without the AR(1) model (Tanaka, 2008, Section 3.5.1). The Kriegler’s estimate of  is 

obtained for the period of instrumental temperature, but the same estimate is assumed for all the 

period in our exercise. Autocorrelations for the missing forcing are still neglected because the 

estimates of the associated propagator and standard deviation are not available. Autocorrelations for 

the atmospheric CO2 concentration is also not included in our analysis. 

εσ

εσ

S8.4. Results and Discussion 

In Figure S15.1, the cost function curves for the inversions including the AR(1) model are compared 
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with those without the AR(1) model. The associated residuals in several selected time series are 

shown in Figure S15.2. In more detail, Figures S15.3 to S15.6 show the radiative forcing and 

temperature change with the climate sensitivity fixed at 1, 3, 5, and 10°C. Histograms and spectrums 

of the temperature residuals are shown in Figure S16. 

First of all, visual inspection of the spectrums in Figure S16 indicates that in all the cases 

the residuals appear as white noise when the AR(1) is implemented. 

Visual inspection of the cost function curves in Figure S15.1 suggests that on the whole, 

the cost function curves based on the inversions including the AR(1) model are wider than those 

based on the standard inversions without the AR(1) model. This result suggests that the ignorance of 

autocorrelations leads to an overconfidence of climate sensitivity estimation, which is in line with 

the result of the analysis for carbon cycle (Ricciuto et al., 2008). 

Looking into this result in more details, the influence of the AR(1) model to the cost 

function curves is different for low and high climate sensitivity. Toward high climate sensitivity, the 

slopes of the cost function curves are hardly influenced by the inclusion of the AR(1) model in all 

the three inversion cases. This result suggests that our conclusion on the importance of forcing 

uncertainty is unaffected even if the autocorrelations in temperature residuals are neglected. 

On the contrary, in low climate sensitivity, the slopes of the cost function curves become 

much flatter by the inclusion of the AR(1) model. This is particularly so in the forcing scaling case. 

The flatter curve for the forcing scaling case stems from the trend in the temperature residuals (right 

panel of Figure S15.2). Figure S15.6 furthermore shows this is caused by the temperature residuals 

during the period 1940-1950 and 1980-2000, which are less penalized than in the case without the 

AR(1) model. But these results are highly influenced by the assumption for the value of standard 

deviation . εσ
The best estimate of climate sensitivity for the missing forcing approach is slightly 

lowered from 3.37°C to 3.06°C when the AR(1) model is considered (Figure S15.1). This is 

primarily caused by the change in the shape of missing forcing residual curve (left panel of Figure 

S15.2). Figure S15.3 shows that the missing forcing becomes substantially smaller during the last 50 

years of the inversion with climate sensitivity fixed at 1°C. The smaller missing forcing in 

combination of small climate sensitivity results in an apparent systematic underestimation of the 

recent temperature (Figure S15.4). However, this turns out to be the ‘best estimates’ because the 

systematic errors are partly explained as autocorrelations. This result points to the need for careful 

interpretation of the inversion results because considering autocorrelations can mask wrong results. 

The other noteworthy result is that the cost function curve for the missing forcing approach 

in Figure S15.1 is lifted up by the inclusion of the AR(1) model whereas those for the other two 

approaches are lowered. The left panel of Figure S15.2 indicates that the increase in the cost function 

values for the missing forcing approach is primarily due to the increase in the temperature residuals 

over the entire range of climate sensitivity. Furthermore, Figure S15.6 shows that the temperature 
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εσ
residuals before 1850 are more penalized due to the smaller standard deviation, which also depends 

on the presupposed value of standard deviation . 

The analysis presented here considers only the autocorrelations in temperature residuals 

described as the AR(1) model, leaving out all the other autocorrelations including those remaining in 

the residuals of temperature and those in other parameters and data. Furthermore, using AR models 

would only partially account for the autocorrelations because of the complexity of correlation 

structure. A full solution would be to introduce stochasticity to the model as model errors 

(Houtekamer et al., 1996) and the ensemble results can be used to estimate the off-diagonal elements 

of the covariance matrices.

In conclusion, our analysis confirms the fact that the ignorance of autocorrelations leads to 

an overconfidence of parameter estimation (e.g. Zellner and Tiao, 1964; Ricciuto et al., 2008). In our 

results, however, this does apply to low climate sensitivity but not high climate sensitivity. By 

neglecting the autocorrelations in temperature residuals, the confirmation of ruling out the low 

climate sensitivity becomes overstated. On the contrary, the main conclusion on the importance of 

forcing uncertainty holds irrespective of the treatment of the autocorrelations. 



 

Table S1. Data in the ACC2 coupled inversion (after Table 3.1 of Tanaka (2008)) 

 

* Four times larger uncertainty ranges are assumed when volcanic forcing is stronger than -0.5 W/m2 (Tanaka, 2008, Section 3.5.2). The total number of degrees of freedom for data is 1,498. 

 

Names (degrees of freedom) Periods Measurement types Temporal resolutions 2σ measurement uncertainties Data sources 

1750-1860 N/A Linear extrapolation to the origin 

from 1860 to 1750 

Average uncertainties 

between 1865 and 2000 

N/A Ocean CO2 uptake 

(df=250) 

1861-2000 C4MIP GCMs/EMIC 10-year moving average Maxima and minima of 

GCMs runs (=1σ) 

Friedlingstein et al. (2006) 

1750-1860 N/A Linear extrapolation to the origin 

from 1860 to 1750 

Average uncertainties 

between 1865 and 2000 

N/A Land CO2 uptake 

(df=250) 

1861-2000 C4MIP GCMs/EMIC 10-year moving average Maxima and minima of 

GCMs runs (=1σ) 

Friedlingstein et al. (2006) 

1750-1968 Ice core sampling 

(Law Dome, Antarctica) 

75-year cutoff spline fit with 5-year 

intervals (1750-1830) 

25-year cutoff spline fit with 1-year 

intervals (1832-1968) 

Linear interpolations between the 

data points 

*1.2 ppm Etheridge et al. (1996) Atmospheric CO2 concentration 

(df=250) 

1969-2000 Station measurements 

(Mauna Loa, Hawaii) 

Annual fit *0.8 ppm 

(0.2 ppm in the literature) 

Keeling et al. (2005) 

1750-1850 Etheridge et al. (1998) 

1851-1983 

Ice core sampling 

(Law Dome, Antarctica; 

Summit, Greenland) 

75-year cutoff spline fit with 10-year 

intervals (1750-1900) 

12.5-year cutoff spline fit with 

2-year intervals (1900-1984) 

Linear interpolations between the 

data points 

*5 ppb 

Etheridge data compiled by Hansen and 

Sato (2004) 

Etheridge et al. (1998) 

Atmospheric CH4 concentration 

(df=249) 

1984-2000 Station measurements 

(CMDL global air sampling 

network) 

Annual fit *12 ppb 

(3 ppb in the literature) 

Dlugokencky data compiled by Hansen 

and Sato (2004) for mean estimates 

Masarie et al. (2001, Table 1) for 

uncertainties 

1750-1961 *Time variant Flueckiger (personal communication) 

1962-1977 

Ice core sampling 

(Summit, Greenland) 

300-year cutoff spline fit with 1-year 

intervals *Interpolation Hansen and Sato (2004) 

 

Atmospheric N2O concentration 

(df=249) 

1978-2000 Station measurements 

(CMDL global air sampling 

network) 

Annual fit *2.0 ppb 

(0.5 ppb in the literature) 

Hansen and Sato (2004) for mean 

estimates 

Masarie et al. (2001, Table 1) for 

uncertainties 

1750-1855 Multi-proxy 1-year intervals *0.36°C 

 

Jones et al. (1998) for mean estimates 

Mann and Jones (2003) for uncertainties 

Surface air temperature change 

(df=250) 

1856-2000 Instrumental measurements Annual fit *0.20°C (1856-1860) 

*0.05°C (2000) 

*Linear interpolation 

between the periods 

Jones et al. (2006) 
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Table S2. Parameters in the ACC2 coupled inversion (after Table 3.2 of Tanaka (2008)) 

 

* Four times larger uncertainty ranges are assumed when volcanic forcing is stronger than -0.5 W/m2 (Tanaka, 2008, Section 3.5.2). The total number of degrees of freedom for parameters is 1,266. 

Names (degrees of freedom) Prior estimates 2σ prior uncertainties 

Anthropogenic CO2 emission due to fossil fuel combustion 

(df=251) 

Marland et al. (2006) between 1750 and 2000 

 

±8% of the prior mean 

(Marland et al., 2006) 

Anthropogenic CO2 emission due to land use change 

(df=251) 

Houghton (2003) between 1850 and 2000 

Linear extrapolation between 1750 and 1849 

Zero emission in 1750 

±100% of the prior mean 

(±50% in Houghton (2003)) 

Anthropogenic CH4 emission 

(df=251) 

van Aardenne et al. (2001) between 1890 and 2000 

Nonlinear extrapolation between 1750 and 1890 

Zero emission in 1750 

±50% in 2000, ±100% in 1970 

±150% between 1890 and 1950 

Linear interpolations between the periods 

Absolute uncertainty ranges assumed constant before 1890 

(John van Aardenne, personal communication) 

Anthropogenic N2O emission 

(df=251) 

van Aardenne et al. (2001) between 1890 and 2000 

Linear extrapolation between 1750 and 1890 

Zero emission in 1750 

±50% in 2000, ±100% in 1970 

±150% between 1890 and 1950 

Linear interpolations between the periods 

Absolute uncertain ranges assumed constant before 1890 

(John van Aardenne, personal communication)  

Missing forcing 

(df=251) 

Zero forcing between 1750 and 2000 *±0.5 W/m2 between 1750 and 1900 

*±1.0 W/m2 in 2000 

*Linear interpolation between 1900 and 2000 

Preindustrial mixed layer temperature 

(df=1) 

19.59°C (Hoffert et al., 1981, pp.290-291; Sundquist and Plummer, 1981, 

p.267) 

Between 13.59 and 25.59°C 

Atmosphere-mixed layer temperature scaling factor 

(df=1) 

0.5 Between 0.0 and 1.0 

Beta factor for CO2 fertilization 

(df=1) 

0.4 

(0.287 (Meyer et al., 1999; Kicklighter et al., 1999), 0.4 (Gitz and Ciais, 

2003), 0.45 (Brovkin et al., 1997), and 0.15 to 0.6 (Kohlmaier et al., 

1987)) 

Between 0.1 and 0.7 (references in left column) 

Q10 for heterotrophic respiration (df=1) 2.0 (Jones and Cox, 2001; Tjoelker et al., 2001) Between 1.5 and 2.5 (references in left column) 

Preindustrial ocean CO2 uptake 

(df=1) 

-0.24 GtC/year (net degassing) 

(-0.48 GtC/year in Mackenzie and Lerman (2006)) 

Between -0.48 and 0.0 GtC/year 

Preindustrial land CO2 uptake 

(df=1) 

0.30 GtC/year (net uptake) 

(0.36 - 0.6 GtC/year in Mackenzie and Lerman (2006)) 

Between 0.0 and 0.60 GtC/year 

Natural CH4 emission (df=1) 210 Mt(CH4)/year (IPCC, 2001, Table 4.2) Between -30 and 450 Mt(CH4)/year (IPCC, 2001, Table 4.2) 

Natural N2O emission (df=1) 10.2 Mt(N)/year (IPCC, 2001, Table 4.4) Between 7.8 and 12.6 Mt(N)/year (IPCC, 2001, Table 4.4) 

CH4 lifetime with respect to OH depletion (df=1) 9.6 year (IPCC, 2001, Table 4.3) Between 5.4 and 13.8 year (IPCC, 2001, Table 4.3) 

N2O lifetime (df=1) 110 year (IPCC, 2001, Table 4.5) Between 83 and 137 year (IPCC, 2001, Table 4.5) 

Climate sensitivity (df=1) 3.5°C (Forest et al., 2002; Gregory et al., 2002; Knutti et al., 2002; IPCC, 

2004; Kriegler, 2005; Stainforth et al., 2005; Forest et al., 2006; Hegerl et 

al., 2006; IPCC, 2007; Räisänen, 2007) 

Between 0.5 and 6.5°C (references in left column) 
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Table S3. Cost function values and squared weighted residuals in the main ACC2 inversions 

 

The final values of the cost function are shown in the top row. Other entries show the contributions to the cost function arising from time-dependent parameters and data and also from constant parameters. 

These are equivalent to the squares of the residuals weighted by the associated prior uncertainty ranges (σ). Squared weighted residuals from time series are summed up over the time horizon of simulation. 

Units for all the quantities shown here are 1. Parameters marked with “—” are not included for the corresponding inversion setup. For example, in the uncoupled experiment, the preindustrial mixed layer 

temperature, the atmosphere-mixed layer temperature scaling factor, and Q10 for heterotrophic respiration are not included in the cost function as carbon cycle processes are not influenced by temperature 

change. 

 

 Coupled 

Missing forcing 

Uncoupled 

Missing forcing 

Uncoupled 

Forcing scaling 

Uncoupled 

No forcing uncertainty 

Total 371.1 365.1 607.0 612.5 

     

Parameters (time series)     

Fossil fuel CO2 emission 1.5 1.4 1.5 1.5 

Land use CO2 emission 87.6 96.5 98.8 98.9 

Anthropogenic CH4 emission 5.8 5.8 5.8 5.8 

Anthropogenic N2O emission 16.6 16.5 16.5 16.8 

Missing forcing 74.3 64.8 — — 

     

Parameters (constants)     

Preindustrial mixed layer temperature 0.01 — — — 

Atmosphere-mixed layer temperature scaling factor 0.21 — — — 

Beta factor for CO2 fertilization 0.83 0.35 0.35 0.34 

Q10 for heterotrophic respiration 5.58 — — — 

Preindustrial ocean CO2 uptake 0.46 0.39 0.39 0.39 

Preindustrial land CO2 uptake 0.71 0.60 0.60 0.60 

Natural CH4 emission 0.42 0.42 0.42 0.42 

Natural N2O emission 0.45 0.45 0.46 0.45 

CH4 lifetime 0.13 0.13 0.13 0.13 

N2O lifetime 0.05 0.05 0.05 0.05 

Forcing scaling factor — — 0.02 — 

Climate sensitivity 0.06 0.00 0.02 0.04 

     

Data (time series)     

Ocean CO2 uptake 18.8 19.4 19.4 19.5 

Land CO2 uptake 14.6 11.7 11.8 11.8 

Atmospheric CO2 concentration 27.9 30.6 28.7 28.6 

Atmospheric CH4 concentration 0.2 0.2 0.2 0.2 

Atmospheric N2O concentration 2.7 2.7 2.9 2.8 

Surface air temperature change 112.3 113.1 418.9 424.3 
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Table S4. Prior and posterior parameter estimates in the main ACC2 inversions 

 

2σ prior uncertainty ranges are shown in brackets in the column for prior. Parameters marked with “—” are not included in the corresponding inversion setup. 

 

 Posterior 

Coupled 

Missing forcing 

Posterior 

Uncoupled 

Missing forcing 

Posterior 

Uncoupled 

Forcing scaling 

Posterior 

Uncoupled 

No forcing uncertainty 

Prior 

For all cases 

Preindustrial mixed layer temperature (°C) 19.9 — — — 19.6 (13.6 ~ 25.6) 

Atmosphere-mixed layer temperature scaling factor (1) 0.34 — — — 0.5 (0.0 ~ 1.0) 

Beta factor for CO2 fertilization (1) 0.59 0.53 0.53 0.52 0.4 (0.1 ~ 0.8) 

Q10 for heterotrophic respiration (1) 1.17 — — — 2.0 (1.5 ~ 2.5) 

Preindustrial ocean CO2 uptake (GtC/year) -0.36 -0.35 -0.35 -0.35 -0.24 (0 ~ -0.48) 

Preindustrial land CO2 uptake (GtC/year) 0.12 0.14 0.14 0.14 0.3 (0 ~ 0.6) 

Natural CH4 emission (Mt(CH4)/year) 320 320 320 320 210 (-30 ~ 450) 

Natural N2O emission (Mt(N)/year) 11.3 11.3 11.3 11.3 10.2 (7.8 ~ 12.6) 

CH4 lifetime (year) 8.54 8.54 8.54 8.54 9.6 (5.4 ~ 13.8) 

N2O lifetime (year) 114 114 114 114 110 (83 ~ 137) 

Forcing scaling factor (1) — — 1.106 — 1.0 (0.0 ~ 2.0)  

Climate sensitivity (°C) 4.04 3.37 3.77 3.10 3.5 (0.5 ~ 6.5) 

 

 



 

Figure S1. Comparison of the ACC2 coupled and uncoupled inversion results 

 

Shown below are the results of the coupled and uncoupled inversions with optimal climate sensitivity (4.04°C and 3.37°C, 

respectively). Forcing uncertainty is expressed as missing forcing. Unless noted otherwise, inserts show the “residuals,” i.e. the 

differences between prior and posterior values. For the anthropogenic CH4 and N2O emissions and atmospheric CH4 and N2O 

concentrations in Figures S1.6 to S1.9, the posterior estimates for the coupled inversion are indistinguishable from those for the 

uncoupled inversion. In Figures S1.10 and S1.11, prior for missing forcing is 0 W/m2 over the entire period. In Figures S1.3 and 

S1.8 to S1.12, prior uncertainty ranges are assumed four times larger when volcanic forcing is stronger than -0.5 W/m2. In Figures 

S1.10 and S1.11, individual forcings in the coupled and uncoupled inversions are nearly the same except for the missing forcing and 

the total forcing. Measurements shown in Figure S1.12 are for the coupled inversion. 
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Figure S1. (Continued) Time series in the ACC2 coupled and uncoupled inversions 
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Figure S1. (Continued) Time series in the ACC2 coupled and uncoupled inversions 

-2

-1

0

1

2

3

4

5

6

7

1750 1800 1850 1900 1950 2000

Year

G
tC

/y
e
a
r

Measurements

2σ measurement uncertainties

Posterior (coupled)

Posterior (uncoupled)

5) Land CO2 uptake
Residuals

-3

-2

-1

0

1

2

3

1750 1800 1850 1900 1950 2000

G
tC

/y
e
a
r

 

0

100

200

300

400

500

1750 1800 1850 1900 1950 2000Year

M
t(C

H
4 )/y

e
a
r

Prior 

2σ prior uncertainties

Posterior (coupled)

Posterior (uncoupled)

6) Anthropogenic CH4 emission 
Residuals

-50

-25

0

25

50

1750 1800 1850 1900 1950 2000

M
t(C

H
4 )/y

e
a
r

 

 

 

 35



 

Figure S1. (Continued) Time series in the ACC2 coupled and uncoupled inversions 
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Figure S1. (Continued) Time series in the ACC2 coupled and uncoupled inversions 
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Figure S1. (Continued) Time series in the ACC2 coupled and uncoupled inversions 
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Figure S2. Comparison of the results of the ACC2 uncoupled inversions giving different treatments to forcing uncertainty 

 

Only the results for the climate component are shown as the other components are insensitive to the treatment of forcing uncertainty. 

The main figure of S2.1 shows the total forcing, which is the sum of the GHG, aerosol, volcanic, solar, and missing forcing. Note 

that in the inversion setup using forcing scaling or assuming no forcing uncertainty, missing forcing is fixed at 0 W/m2 over the 

entire period. Insert in Figure S2.1 shows missing forcing and “additional forcing by scaling,” i.e. additional aerosol forcing that are 

added by scaling the prescribed total aerosol forcing according to the forcing scaling factor obtained from the inversion (=1.106, that 

is 10.6% of the prescribed total aerosol forcing). In Figures S2.1 and S2.2, prior uncertainty ranges are assumed four times larger 

when volcanic forcing is stronger than -0.5 W/m2. Measurements shown in Figure S2.2 are for the inversion using the missing 

forcing approach. Values in the square brackets are the best estimates of climate sensitivity for the respective inversions. 
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Figure S3. Various contributions to the cost functions of the main ACC2 inversions 

 

Shown below are the squares of the residuals weighted by the associated prior uncertainty ranges (σ). Not that they are shown on a 

logarithmic scale. Explanations for acronyms follow. EMICO2FF: fossil fuel CO2 emission, EMICO2LU: land use CO2 emission, 

EMICH4ANT: anthropogenic CH4 emission, EMIN2OANT: anthropogenic N2O emission, MISFOR: missing forcing, UPCO2OCN: 

ocean CO2 uptake, UPCO2LND: land CO2 uptake, CONCO2: atmospheric CO2 concentration, CONCH4: atmospheric CH4 

concentration, CONN2O: atmospheric N2O concentration, TEMP: surface air temperature change, SUM: sum of the squared 

weighted residuals for all the time series. 
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Figure S3. (Continued) Squared weighted residuals in time series of the main ACC2 inversions 
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Figure S4. Various contributions to the cost function in the ACC2 inversions giving different treatments to forcing uncertainty 

 

Squared weighted residuals summed over the entire time horizon are shown for the missing forcing- and forcing scaling-based 

uncoupled inversions with climate sensitivity fixed at values between 1°C and 10°C at intervals of 0.25°C. Except for temperature 

change, squared weighted residuals from the two approaches are hardly distinguishable. 
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Figure S5. Global-mean surface air temperature response to constant radiative forcing perturbation 

 

Temperature response to sustained perturbation in radiative forcing (0.25, 0.50, and 0.75 W/m2) is computed under different 

assumptions on climate sensitivity (1, 4, 7, and 10°C). The forcing perturbation starts in the year 0. The initial state is equivalent to 

the preindustrial state assumed for the year 1750. Calculations are performed by using DOECLIM (Kriegler, 2005; Section 2.3 of 

Tanaka and Kriegler et al. (2007)), the climate component of ACC2. No climate-carbon cycle feedback is provided. 
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Figure S6. Sensitivity of the ACC2 inversion results to the prior forcing uncertainty 

 

Missing forcing- and forcing scaling-based ACC2 uncoupled inversions are performed by assuming 50% smaller, standard, and 50% 

larger prior uncertainty ranges for missing forcing and forcing scaling factor with climate sensitivity fixed at values between 1°C 

and 10°C at intervals of 0.25°C. Figure S6.1 shows the changes in the final value of the cost function. Values in the square brackets 

are the best estimates of climate sensitivity for the respective inversion setups. Cost functions values for the different forcing scaling 

cases are indistinguishable. In Figures S6.2 and S6.3, forcing residuals (that is, posterior missing forcing and additional forcing by 

scaling) and temperature residuals are compared for different climate sensitivity (1, 3, 5, and 10°C) and different prior forcing 

uncertainty (50% smaller, standard, and 50% larger ranges). Thick red and blue lines in Figure S6.2 are the posterior missing forcing 

and additional forcing by scaling, respectively. Thin lines represent the respective 2σ prior uncertainty ranges. In Figure S6.3, thick 

red and blue lines represent the temperature residuals for the missing forcing- and forcing scaling-based inversions, respectively. 

Thin black line is the 2σ prior uncertainty ranges used for both types of inversions. 
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Figure S6. (Continued) Sensitivity of the ACC2 inversion results to the prior forcing uncertainty 
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Figure S6. (Continued) Sensitivity of the ACC2 inversion results to the prior forcing uncertainty 
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Figure S7. Sensitivity of the ACC2 inversion results to prior land use CO2 emission uncertainty 

 

Figure S7.1 shows the changes in the final value of the cost function when the prior uncertainty in land use CO2 emission is assumed 

to be larger/smaller than the standard by 50%. The ACC2 coupled and inversions are performed with climate sensitivity fixed at 

values between 1°C and 10°C at intervals of 0.25°C. Black plots are identical with those shown in Figure 1 of the main article. 

Values in the square brackets are the best estimates of climate sensitivity for the respective inversion setups. Figures S7.2 to S7.4 

shows the associated coupled inversion results in the carbon cycle using respective optimal climate sensitivity. 
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Figure S7. (Continued) Sensitivity of the ACC2 inversion results to prior land use CO2 emission uncertainty 
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Figure S7. (Continued) Sensitivity of the ACC2 inversion results to prior land use CO2 emission uncertainty 
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Figure S7. (Continued) Sensitivity of the ACC2 inversion results to prior land use CO2 emission uncertainty 
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Figure S7. (Continued) Sensitivity of the ACC2 inversion results to prior land use CO2 emission uncertainty 
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Figure S7. (Continued) Sensitivity of the ACC2 inversion results to prior land use CO2 emission uncertainty 
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Figure S8. Sensitivity of the ACC2 inversion results to volcanic forcing 

 

Figure S8.1 shows the changes in the final value of the cost function when different volcanic forcing is used (Ammann et al., 2003; 

Bertrand et al., 2002; Crowley et al., 2003). Inversions are performed with climate sensitivity fixed at values between 1°C and 10°C 

at intervals of 0.25°C. Black plots are identical with those shown in Figure 1 of the main article. Values in the square brackets are 

the best estimates of climate sensitivity for the respective inversion setups. Figures S8.2 to S8.8 show the associated coupled 

inversion results with respective optimal climate sensitivity. In Figures S8.3, S8.6, and S8.8, prior uncertainty ranges are assumed 

four times larger when volcanic forcing is stronger than -0.5 W/m2. Measurements shown in Figure S8.8 are for the coupled 

inversion using Ammann’s volcanic forcing. 
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Figure S8. (Continued) Sensitivity of the ACC2 inversion results to volcanic forcing 
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Figure S8. (Continued) Sensitivity of the ACC2 inversion results to volcanic forcing 
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Figure S8. (Continued) Sensitivity of the ACC2 inversion results to volcanic forcing 
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Figure S8. (Continued) Sensitivity of the ACC2 inversion results to volcanic forcing 
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Figure S9. Sensitivity of the ACC2 inversion results to ocean diffusivity 

 

Figure S9.1 shows the changes in the final value of the cost function when ocean diffusivity is assumed to be 0.55 cm2/s (standard), 

1 cm2/s, and 2 cm2/s. The uncoupled inversions are performed with climate sensitivity fixed at values between 1°C and 10°C at 

intervals of 0.25°C. Black plots are identical with those shown in Figure 1 of the main article. Values in the square brackets are the 

best estimates of climate sensitivity for the respective inversion setups. Figures S9.2 and S9.3 show the associated uncoupled 

inversion results of radiative forcing and temperature change with respective optimal climate sensitivity indicated in the square 

brackets. Measurements shown in Figure S9.3 are for the uncoupled inversion with ocean diffusivity of 0.55 cm2/s. 
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Figure S9. (Continued) Sensitivity of the ACC2 inversion results to ocean diffusivity 
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Figure S10. Sensitivity of the ACC2 inversion results to prior climate sensitivity 

 

Shown below are the ACC2 uncoupled inversion results for radiative forcing and temperature change under different assumptions on 

prior climate sensitivity. The 2σ prior range of 0.5°C–6.5°C is the standard assumption adopted in the ACC2 inversion. The 2σ prior 

range of 1.5°C–4.5°C (IPCC, 2001, Chapter 9) is a conventional range. The 2σ prior range of 0.5°C–10.5°C is a conservative range 

(e.g. IPCC, 2007, pp.798-799). The inversion results are nearly indistinguishable each other. Values in the square brackets are the 

best estimates of climate sensitivity for the respective inversion setups. Measurements shown in Figure S10.2 are for the uncoupled 

inversion with the standard prior range for climate sensitivity. 
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Figure S11. Influence of prescribed aerosol forcing to missing forcing 

 

Shown below are the results of ACC2 uncoupled inversions when 50% smaller, standard, and 50% larger total aerosol forcing are 

assumed. In Figure S11.3, measurements are for the standard uncoupled inversion. Values in the square brackets are the best 

estimates of climate sensitivity for the respective inversion setups. 
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Figure S11. (Continued) Influence of prescribed aerosol forcing to missing forcing 
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Figure S12. Influence of prescribed volcanic forcing to missing forcing 

 

Shown below are the results of the ACC2 uncoupled inversions with different volcanic forcing prescribed (Ammann et al., 2003 

(standard setup); Bertrand et al., 2002; Crowley et al., 2003). Values in the square brackets in the legends are the best estimates of 

climate sensitivity for the respective inversion setups. In Figure S12.3, measurements are for the uncoupled inversion using 

Ammann’s volcanic forcing. 
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Figure S12. (Continued) Influence of prescribed volcanic forcing to missing forcing 
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Figure S13. Influence of ENSO-driven temperature variability to missing forcing 

 

The standard ACC2 uncoupled inversion is compared with an uncoupled inversion without accounting for the ENSO-driven 

variability in the temperature records. Values in the square brackets in the legends are the best estimates of climate sensitivity for the 

respective inversion setups. Measurements shown in Figure S13.2 are for the standard uncoupled inversion. 
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Figure S14. Changes in the cost function value with the changes in parameter values 

 

Shown below are the final values of the cost function when inversions are performed with some key parameters fixed at different 

values. These experiments are done for fixed climate sensitivity (1, 3, 5, and 10°C). Note that the vertical scale for Figure S14.4 is 

different from others. 
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Figure S15. Influence of the AR(1) model to the inversion results 

 

Figure S15.1 shows how the cost function curves in Figure 1 of the main article are influenced by the implementation of the AR(1) 

model for temperature residuals. The associated squared weighted residuals of selected time series are shown in Figure S15.2. 

Figures S15.3 to S15.6 are the radiative forcing and temperature change in the missing forcing-based and forcing scaling-based 

inversions with the climate sensitivity fixed at 1, 3, 5, and 10°C.  
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Figure S15. (Continued) Influence of the AR(1) model to the inversion results 
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Figure S15. (Continued) Influence of the AR(1) model to the inversion results 
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Figure S15. (Continued) Influence of the AR(1) model to the inversion results 
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Figure S16. Influence of the AR(1) model to the temperature residuals 

 

Figures S16.1a-p are the histograms of the temperature residuals in various ACC2 inversion results (missing forcing- and forcing 

scaling-based approach; climate sensitivity fixed at 1, 3, 5, 10°C; with/without the AR(1) model for temperature residuals). The bin 

width is determined by computing 40% of the standard deviation (e.g. Laws, 1997, p.215). Figures S16.2a-p show the corresponding 

spectrums of the temperature residuals. 
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Figure S16. (Continued) Influence of the AR(1) model to the temperature residuals 
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Figure S16. (Continued) Influence of the AR(1) model to the temperature residuals 
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Figure S16. (Continued) Influence of the AR(1) model to the temperature residuals 
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