745 research outputs found

    Mathematical modelling of the landslide occurred at Gagliano Castelferrato (Italy)

    No full text
    International audienceShallow slopes in clayey colluvial covers are often involved in progressive downhill motion with discontinuous rate of movements, depending on fluctuations in pore-water pressure. In geotechnical engineering research on natural slopes, the main efforts have been concentrated on stability analysis, always with a rigid perfectly plastic body assumption. In case of slow slope movements, however, the notion of stability losses its sense, so the main question is not to evaluate a stability factor, but to model a velocity field and to define the kinematic and dynamic features of the movement (mobility analysis). Many authors, in their researches, deal with slow slope movements and for the complexity of the problem and the great number of parameters involved they agree about applying numerical techniques (FEM, FDM) and advanced material modelling (elastoviscoplasticity) and suggest to calibrate the involved parameters values with the help of ''back analyses'' of existing case histories. In this paper a mathematical model predicting the landslide body viscous deformations, is presented. The model has been implemented in a computer FDM code, and has been tested on some well known case histories. Here it is applied to the case of a landslide occurred at Gagliano Castelferrato (Sicily ? Italy), where a great number of field measurements was available

    18 Ne diproton decay

    Get PDF
    Two proton radioactivity studies have been performed on excited states of 18 Ne produced, among other fragments, by 20 Ne projectile fragmentation and excited via Coulomb excitation on a Pb target. Every incoming ion was tagged before interacting with the lead target on an event by event basis in order to discriminate the secondary reactions according to the projectile. Decay of 18 Ne levels has been studied by complete kinematical reconstruction. In spite of the low statistics a couple of events looks very promising for two proton correlated emission

    Micro-universes and "strong black holes": a purely geometric approach to elementary particles

    Get PDF
    We present here a panoramic view of our unified, bi--scale theory of gravitational and strong interactions [which is mathematically analogous to the last version of N.Rosen's bi--metric theory; and yields physical results similar to strong gravity's]. This theory, developed during the last 15 years, is purely geometrical in nature, adopting the methods of General Relativity for the description of hadron structure and strong interactions. In particular, hadrons are associated with `` strong black--holes'', from the external point of view, and with ``micro--universes'', from the internal point of view. Among the results herein presented, let us mention the derivation: (i) of confinement and (ii) asymptotic freedom for the hadron constituents; (iii) of the Yukawa behaviour for the strong potential at the static limit; (iv) of the strong coupling ``constant'', and (v) of mesonic mass spectra

    Adducts of functionalized Graphene layers with Ag nanoparticles for Antimicrobial applications

    Get PDF
    Health and environmental impacts of multi-drug resistance (MDR) pathogens are becoming more and more relevant nowadays, thus increasing the need of developing new, safe and effective antimicrobials. This research was focused on the synthesis, the characterization and the evaluation of the antimicrobial and cytotoxic activity of hybrid nanomaterials made up through a simple and sustainable functionalization of three carbon substrates, namely Graphite, Carbon black and Carbon nanotubes, with a pyrrole moiety (SP) and silver nanoparticles (Ag-NP) [1, 2]. The adducts were analyzed by means of thermogravimetric analyses (TGA), transmission electron microscopy (HRTEM) and X-ray diffraction analyses (WAXD), which confirmed the successful functionalization of raw materials. UV-vis spectroscopy and dynamic/electrophoretic light scattering (DLS/ELS) provided information regarding carbon suspensions stability, particles sizes and surface charge. Results from microbiological tests revealed an outstanding enhancement of the antimicrobial activity promoted by the functionalization with Ag nanoparticles, maintaining unaltered the cytotoxic levels exerted by not-functionalized materials. In the light of these results, a possible bactericidal mechanism based on the synergy between mechanical and oxidative stresses at the bacterial membrane level is proposed

    Cardiovascular autonomic function and MCI in Parkinson's disease

    Get PDF
    Introduction: dysautonomic dysfunction and cognitive impairment represent the most disabling non-motor features of Parkinson's Disease (PD). Recent evidences suggest the association between Orthostatic Hypotension (OH) and PD-Dementia. However, little is known on the interactions between cardiovascular dysautonomia and Mild Cognitive Impairment (MCI). We aimed to evaluate the association between cardiovascular dysautonomia and MCI in patients with PD. Methods: non-demented PD patients belonging to the PACOS cohort underwent a comprehensive instrumental neurovegetative assessment including the study of both parasympathetic and sympathetic function (30:15 ratio, Expiratory-Inspiratory ratio [E-I] and presence of Orthostatic Hypotension [OH]). Diagnosis of MCI was made according to the MDS criteria level II. Results: we enrolled 185 PD patients of whom 102 (55.1%) were men, mean age was 64.6 ± 9.7 years, mean disease duration of 5.6 ± 5.5 years with a mean UPDRS-ME score of 31.7 ± 10.9. MCI was diagnosed in 79 (42.7%) patients. OH was recorded in 52 (28.1%) patients, altered 30:15 ratio was recorded in 39 (24.1%) patients and an altered E-I ratio was found in 24 (19.1%) patients. Presence of MCI was associated with an altered 30:15 ratio (adjOR 2.83; 95%CI 1.25–6.40) but not with an altered E-I ratio, while OH was associated only with the amnestic MCI subgroup (OR 2.43; 95% CI 1.05–5.06). Conclusion: in our study sample, MCI was mainly associated with parasympathetic dysfunction in PD

    First experimental evidence of 2He decay from 18Ne excited states

    Get PDF
    Two-proton decay from 18Ne excited states has been studied by complete kinematical detection of the decay products. The 18Ne nucleus has been produced as a radioactive beam by 20Ne projectile fragmentation at 45 AMeV on a 9Be target, using the FRIBs in-flight facility of the LNS. The 18Ne at 33 AMeV incident energy has been excited via Coulomb excitation on a natPb target. The correlated 2p emission has been disentangled from the uncorrelated 2p emission using a high granularity particle detector setup allowing the reconstruction of momentum and angle correlations of the two emitted protons. The obtained results unambiguously show that the 6.15 MeV 18Ne state two-proton decay proceeds through 2He emission (31%) and democratic or virtual sequential decay (69%)

    Past, present and future of radioactive ion beams produced In-Flight at LNS

    Get PDF
    The FRIBs@LNS facility produces Radioactive Ion Beams (RIBs) at intermediate energies, by projectile fragmentation. The possibility of using the produced RIBs as secondary beams in nuclear physics experiments by applying the tagging technique, i.e. the identification, event-by-event, in charge, mass and energy of each ion of the RIBs cocktail selected by the fragment separator, before it interacts with the secondary target, has been demonstrated. In 2010 an upgrade of the facility has been performed. Status and perspectives of the FRIBs@LNS facility are discussed
    • …
    corecore