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ABSTRACT

We present here a panoramic view of our unified, bi–scale theory of grav-
itational and strong interactions [which is mathematically analogous to the
last version of N.Rosen’s bi–metric theory; and yields physical results sim-
ilar to strong gravity ’s]. This theory, developed during the last 15 years,
is purely geometrical in nature, adopting the methods of General Relativity
for the description of hadron structure and strong interactions. In partic-
ular, hadrons are associated with “strong black–holes”, from the external
point of view, and with “micro–universes”, from the internal point of view.
Among the results herein presented, let us mention the derivation: (i) of
confinement and (ii) asymptotic freedom for the hadron constituents; (iii)
of the Yukawa behaviour for the strong potential at the static limit; (iv) of
the strong coupling “constant”, and (v) of mesonic mass spectra.

1. Premise

Probably each of us, at least when young, has sometimes imagined that every
small particle of matter could be, at a suitably reduced scale, a whole cosmos. This
idea has very ancient origins. It is already present, for example, in some works by
Democritus of Abdera (about 400 B.C.). Democritus, simply inverting that analogy,
spoke about huge atoms, as big as our cosmos. And, to be clearer, he added: if one of
those super-atoms (which build up super-cosmoses) abandoned his “giant universe”
to fall down on our world, our world would be destroyed...

Such kind of considerations are linked to the fantasies about the physical ef-
fects of a dilation or contraction of all the objects which surround us, or of the
whole “world”. Fantasies like these have also been exploited by several writers: from
F. Rabelais (1565) to J. Swift, the narrator of Samuel Gulliver’s travels (1727); or to
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I. Asimov. It is probably because of the great diffusion of such ideas that, when the
planetary model of the atom was proposed, it achieved a great success among people.

Actually, we meet such intuitive ideas in the scientific arena too. Apart from
the already quoted Democritus, let us remember the old conception of a hierarchy
of universes —or rather of cosmoses— each of them endowed with a particular scale
factor (let us think, for instance, of a series of russian dolls). Nowadays, we can
really recognize that the microscopic analysis of matter has revealed grosso modo a
series of “chinese boxes”: so that we are entitled to suppose that something similar
may be met also when studying the universe on a large scale, i.e., in the direction
of the macro besides of the micro. Hierarchical theories were formulated for example
by J.H. Lambert (1761) and, later on, by V.L. Charlier (1908, 1922) and F. Selety
(1922–24); followed more recently by O. Klein, H. Alfvén and G. de Vaucouleurs, up
to the works of A. Salam and co-workers, K.P. Sinha and C. Sivaram, M.A. Markov,
E. Recami and colleagues, D.D. Ivanenko and collaborators, M. Sachs, J.E. Charon,
H. Treder, P. Roman, R.L. Oldershaw, and others.1

2. Introduction

In this paper we confine ourselves to examine the possibility of considering
elementary particles as micro universes:2 that is to say, the possibility that they be
similar —in a sense to be specified— to our cosmos. More precisely, we shall refer
ourselves to the thread followed by P. Caldirola, P. Castorina, A. Italiano, G.D.
Maccarrone, M. Pavsic, and ourselves.3

Let us recall that Riemann, as well as Clifford and later Einstein,4 believed
that the fundamental particles of matter were the perceptible evidence of a strong lo-
cal space curvature. A theory which stresses the role of space (or, rather, space-time)
curvature already does exist for our whole cosmos: General Relativity, based on Ein-
stein gravitational field equations; which are probably the most important equations
of classical physical theories, together with Maxwell’s electromagnetic field equations.
Whilst much effort has already been made to generalize Maxwell equations, passing
for example from the electromagnetic field to Yang–Mills fields (so that almost all
modern gauge theories are modelled on Maxwell equations), on the contrary Einstein
equations have never been applied to domains different from the gravitational one.
Even if they, as any differential equations, do not contain any inbuilt fundamental
length: so that they can be used a priori to describe cosmoses of any size.

Our first purpose is now to explore how far it is possible to apply successfully
the methods of general relativity (GR), besides to the world of gravitational interac-
tions, also to the domain of the so–called nuclear, or strong , interactions:5 namely, to
the world of the elementary particles called hadrons. A second purpose is linked to
the fact that the standard theory (QCD) of strong interactions has not yet fully ex-
plained why the hadron constituents (quarks) seem to be permanently confined in the
interior of those particles; in the sense that nobody has seen up to now an isolated



“free” quark, outside a hadron. So that, to explain that confinement, it has been
necessary to invoke phenomenological models, such us the so–called “bag” models, in
their MIT and SLAC versions for instance. The “confinement” could be explained, on
the contrary, in a natural way and on the basis of a well–grounded theory like GR, if
we associated with each hadron (proton, neutron, pion,...) a particular “cosmological
model”.

3. The Model by Micro-Universes

Let us now try to justify the idea of considering the strong interacting particles
(that is to say, hadrons) as micro-universes. We meet a first motivation if we think
of the so–called “large number coincidences”, already known since several decades
and stressed by H. Weyl, A.I. Eddington, O. Klein, P. Jordan, P.A.M. Dirac, and by
others.

The most famous among those empirical observations is that the ratio R/r
between the radius R ≃ 1026m of our cosmos (gravitational universe) and the typical
radius r ≃ 10−15m of elementary particles is grosso modo equal to the ratio S/s
between the strength S of the nuclear (“strong”) field and the strength s of the
gravitational field (we will give later a definition of S, s):

ρ ≡ R

r
≃ S

s
. (1)

This does immediately suggest the existence of a similarity, in a geometrico–
physical sense, between cosmos and hadrons. As a consequence of such similarity, the
“theory of models” yields —by exploiting simple dimensional considerations— that,
if we contract our cosmos of the quantity

ρ = R/r ≈ 1041

(that is to say, if we transform it in a hadronic micro-cosmos similar to the previous
one), the field strength would increase in the same ratio: so to get the gravitational
field transformed into the strong one.

If we observe, in addition, that the typical duration of a decay is inversely
proportional to the strength of the interaction itself, we are also able to explain why
the mean-life of our gravitational cosmos (∆t ≃ 1018 s: duration —for example—
of a complete expansion/contraction cycle, if we accept the theory of the cyclic big
bang) is a multiple, with the same ratio, of the typical mean-life (∆τ ≃ 10−23s) of the
“strong micro-universes”, or hadrons:

∆t ≃ ρ∆τ. (2)

It is also interesting that, from the self-consistency of these deductions implies
—as we shall show later— that the mass M of our cosmos should be equal to ρ2 ≃



(1041)2 times the typical mass m of a hadron: a fact that seems to agree with reality,
and constitutes a further “numerical coincidence”, the so–called Eddington relation.
Another numerical coincidence is shown and explained in ref.6

By making use of Mandelbrot’s language7 and of his general equation for self-
similar structures, what precedes can be mathematically translated into the claim that
cosmos and hadrons are systems, with scales N and N−1, respectively, whose “fractal
dimension” is D = 2, where D is the auto-similarity exponent that characterizes the
hierarchy. As a consequence of all that, we shall assume that cosmos and hadrons
(both of them regarded of course as finite objects) be similar systems: that is, that
they be governed by similar laws, differing only for a “global” scale transformation
which transforms R into r and gravitational field into strong field. [To fix our ideas,
we may temporarily adopt the näıve model of a “newtonian ball” in three–dimensional
space for both cosmos and hadrons. Later on, we shall adopt more sensible models,
for example Friedmann’s]. Let us add, incidentally, that we should be ready a priori
to accept the existence of other cosmoses besides ours: let us recall that man in every
epoch has successively called “universe” his valley, the whole Earth, the solar system,
the Milky Way and today (but with the same simple–mindedness) our cosmos, as we
know it on the basis of our observational and theoretical instruments. . . 8

Thus, we arrive at a second motivation for our theoretical approach: That
physical laws should be covariant (= form invariant) under global dilations or con-
tractions of space-time. We can easily realize this if we notice that: (i) when we dilate
(or contract) our measure units of space and time, physical laws, of course, should
not change their form; (ii) a dilation of the measure units is totally equivalent to a
contraction (leaving now “meter” and “second” unaltered) of the observed world.

Actually, Maxwell equations of electromagnetism —the most important equa-
tions of classical physics, together with Einstein equations, as we already said— are
by themselves covariant also under conformal transformations and, in particular, un-
der dilations. In the case when electric charges are present, such a covariance holds
provided that charges themselves are suitably “scaled”.

Analogously, also Einstein gravitational equations are covariant9 under dila-
tions: provided that, again, when in the presence of matter and of a cosmological
term Λ, they too are scaled according to correct dimensional considerations. The
importance of this fact had been well realized by Einstein himself, who two weeks
before his death wrote, in connection with his last unified theory: <<From the form
of the field [gravitational + electromagnetic] equations it follows immediately that:
if gik(x) is a solution of the field equations, then also gik(x/α), where α is a positive
constant, is a solution (“similar solutions”). Let us suppose, for example, that gik

represents a finite crystal embedded in a flat space. It is then possible that a second
‘universe’ exists with another crystal, identical with the first one, but dilated α times
with respect to the former. As far as we confine ourselves to consider a universe
containing only one crystal, there are no difficulties: we just realize that the size of
such a crystal (standard of length) is not determined by the field equations. . .>>.



These lines are taken from Einstein’s preface to the Italian book Cinquant’anni di
Relatività.10 They have been written in Princeton on April 4th, 1955, and stress the
fact, already mentioned by us, that differential equations —as all the fundamental
equations of physics— do not contain any inbuilt “fundamental length”. In fact, Ein-
stein equations can describe the internal dynamics of our cosmos, as well as of much
bigger super-cosmoses, or of much smaller micro-cosmoses (suitably “scaled”).

4. A Hierarchy of “Universes”

As a first step for better exploiting the symmetries of the fundamental equa-
tions of classical physics, let us therefore fix our attention on the space-time dilations

x′

µ = ρxµ (3)

with xµ ≡ (t; x, y, z) and µ = 0, 1, 2, 3, and explicitly require physical laws to be
covariant with respect to them: under the hypothesis, however, that only discrete
values of ρ are realized in nature. As before, we are moreover supposing that ρ is
constant as the space or time position varies (global, besides discrete, dilations).

Let us recall that natural objects interact essentially through four (at least)
fundamental forces, or interactions: the gravitational, the “weak”, the electromag-
netic and the “strong” ones; here listed according to their (growing) strength. It is
possible to express such strengths by pure numbers, so to be allowed to compare them
each other. For instance, if one chooses to define each strength as the dimensionless
square of a “vertex coupling constant”, the electromagnetic strength results to be
measured by the (dimensionless) coefficient Ke2/h̄ ≡ α ≃ 1/137, where e is the
electron charge, h̄ the reduced Planck constant, c is the light speed in vacuum and K
is the electromagnetic interaction universal constant (in the International System of
units, K = (4πε0)

−1, with ε0 = vacuum dielectric constant). Here we are interested
in particular in the gravitational and strong interaction strengths:

s ≡ Gm2/h̄c; S ≡ Ng2/h̄c,

where G and N are the gravitational and strong universal constants, respectively;
quantities m e g representing the gravitational charge (=mass) and the strong
charge11, 12 (cf. Fig. 1), respectively, of one and the same hadron: for example of
a nucleon N or of a pion π. More precisely, we shall often adopt in the following the
convention of calling m and g “gravitational mass” and “strong mass”, respectively.

Let us consider, therefore, two identical particles endowed with both gravita-
tional (m) and strong (g) mass, i.e., two identical hadrons, and the ratio between
the strengths S and s of the corresponding strong and gravitational interactions. We
find S/s ≡ Ng2/Gm2 ≃ 1040÷41, so that one verifies that ρ ≡ R/r ≃ S/s. For
example for m = mπ one gets Gm2/h̄c ≃ 1.3 × 10−40, while the ppπ or ππρ (or
quark-quark-gluon: see below) coupling constant squares are Ng2/h̄c ≃ 14 or 3 (or
0.2), respectively.



Fig. 1 – “Coloured” quarks and their strong charge – This scheme represents
the complex plane3, 12, 13 of the sign s of the quark strong–charges gj in a
hadron. These strong charges can have three signs, instead of two as in the
case of the ordinary electric charge e. They can be represented, for instance,
by s1 = (i −

√
3)/2; s2 = (i +

√
3)/2; s3 = −i, which correspond to the

arrows separated by 120o angles. The corresponding anti-quarks will be en-
dowed with strong charges carrying the complex conjugate signs s1, s2, s3.
The three quarks are represented by the “yellow” (Y), “red” (R) and “blue”
(B) circles; the three anti-quarks by the “violet” (V), “green” (G) and “or-
ange” (O) circles. The latter are complementary to the former corresponding
colors. Since in real particles the inter–quark forces are saturated, hadrons are
white. The white colour can be obtained either with three–quark structures,
by the combinations YRB or VGO (as it happens in baryons and antibaryons,
respectively), or with two–quark structures, by the combinations YV or RG
or BO [which are actually quark–antiquark combinations], as it happens in
mesons and their antiparticles. See also note11.



Already at this point, we can make some simple remarks. First of all, let us
notice that, if we put conventionally m ≡ g, then the strong universal constant N
becomes

N ≃ ρG ≈ hc/m2
π. (4)

On the contrary, if we choose units such that [N ] = [G] and moreover N =
G = 1, we obtain g = m

√
ρ and, more precisely (with n = 2 or n = 3),

go = g/n ≃
√

h̄c/G ≡ Planck mass,

which tells us that —in suitable units— the so–called “Planck mass” is nothing but
the magnitude of the rest strong–mass [= strong charge] of a typical hadron, or rather
of quarks.11

From this point of view, we should not expect the “micro black–holes” (with
masses of the order of the Planck mass), predicted by various Authors, to exist; in
fact, we already know of the existence of quarks, whose strong charges are of the order
of the Planck mass (in suitable units). Moreover, the fact —well known in standard
theories— that gravitational interactions become as strong as the “strong” ones for
masses of the order of the Planck mass does simply mean in our opinion that the
strong gravity field generated by quarks inside hadrons (strong micro-universes) is
nothing but the strong nuclear field.

5. “Strong Gravity”

A consequence of what stated above is that inside a hadron (i.e., when we want
to describe strong interactions among hadron constituents) it must be possible to
adopt the same Einstein equations which are used for the description of gravitational
interactions inside our cosmos; with the only warning of scaling them down, that
is, of suitably scaling , together with space distances and time durations, also the
gravitational constant G (or the masses) and the cosmological constant Λ.

Let us now recall that Einstein’s equations for gravity do essentially state the
equality of two tensorial quantities: the first describing the geometry (curvature) of
space-time, and the second —that we shall call “matter tensor”, GT µν— describing
the distribution of matter:

Rµν −
1

2
gµνR

ρ
ρ − Λgµν = −kGTµν ; [k ≡ 8π

c4
]. (5)

As well-known, G ≃ 6.7 × 10−11m3/(kg × s2), while Λ ≈ 10−52m−2.
Inside a hadron, therefore, equations of the same form will hold, except that

instead of G it will appear (as we already know) quantity N ≈ hc/m2
π and instead of

Λ it will appear the “strong cosmological constant” (or “hadronic constant”) λ:

N ≡ ρ1G; λ ≡ ρ2Λ; ρ1 ≈ ρ, (6)



so that λ ≃ 1030m−2 = (1 fm)−2, or λ−1 ≈ 0.1 barn.
For brevity’s sake, we shall call Sµν ≡ NTµν the “strong matter tensor”.
What precedes can be directly applied, with a satisfactory degree of approxi-

mation, to the case —for example— of the pion: i.e., to the case of the cosmos/pion
similarity. Almost as if our cosmos were a super–pion, with a super–quark (or “meta-
galaxy”, adopting Ivanenko’s terminology) of matter and one of anti-matter. Let
us recall however that, as we already warned in Section 3, the parameter ρ can vary
according to the particular cosmos and hadron considered. Analogously Λ, and there-
fore λ, can vary too: with the further circumstance that a priori also their sign can
change, when varying the object (cosmos or hadron) taken into examination.

As far as ρ1 is concerned, an even more important remark has to be made. Let
us notice that the gravitational coupling constant Gm2/h̄c (experimentally measured
in the case of the interaction of two “tiny components” of our particular cosmos)
should be compared with the analogous constant for the interaction of two tiny com-
ponents (partons? partinos?) of the corresponding hadron, or rather of a particular
constituent quark of its. That constant is unknown to us. We know however, for
the simplest hadrons, the quark-quark-gluon coupling constant: Ng2/h̄c ≃ 0.2. As a
consequence, the best value for ρ1 we can predict —up to now— for those hadrons is
ρ1 ≃ 1038 ÷ 1039 [and, in fact, 1038 is the value which has provided the results most
close to the experimental data]: a value that however will vary, let us repeat it, with
the particular cosmos and the particular hadron chose for the comparison.

The already mentioned “large numbers” empirical relations, which link the
micro- with the macro-cosmos, have been obtained by us as a by-product of our scaled–
down equations for the interior of hadrons, and of the ordinary Einstein equations.
Notice, once more, that our “numerology” connects the gravitational interactions with
the strong ones, and not with the electromagnetic ones (as Dirac, instead, suggested).
It is worthwhile noticing that strong interactions, as the gravitational —but differently
from the electromagnetic ones,— are highly non-linear and then associable to non-
abelian gauge theories. One of the purposes of our theoretical approach consists,
incidentally, in proposing an ante litteram geometrical interpretation of those theories.

Before going on, let us specify that the present geometrization of the strong
field is justified by the circumstance that the “Equivalence principle” (which rec-
ognizes the identity, inside our cosmos, of inertial and gravitational mass) can be
extended to the hadronic universe in the following way. The usual Equivalence prin-
ciple can be understood, according to Mach, thinking of the inertia mI of a given
body as due to its interaction with all the other masses of the universe: an interac-
tion which in our cosmos is essentially gravitational; so that mI coincides with the
gravitational mass: mI ≡ mG. Inside a “hadronic cosmos”, however, the predomi-
nant interaction among its constituents is the strong one; so that the inertia mI of a
constituent will coincide with its strong charge g (and not with mG). We shall see
that our generalization of the Equivalence principle will be useful for geometrizing
the strong field not only inside a hadron, but also in its neighborhood.



Both for the cosmos and for hadrons, we shall adopt Friedmann–type models;
taking advantage of the fact that they are compatible with the Mach Principle, and
are embeddable in 5 dimensions.

6. In the Interior of a Hadron

Let us see some consequences of our Einstein–like equations, re-written for the
strong field and therefore valid inside a hadron:

Rµν −
1

2
gµνR

ρ
ρ − λgµν = −kSµν ; [Sµν ≡ NTµν ]. (7)

In the case of a spherical constituent, that is to say of a spherically symmetric
distribution g′ of “strong mass”, and in the usual Schwarzschild-deSitter r,t coordi-
nates, the known geodesic motion equations for a small test–particle (let us call it a
parton, with strong mass g”) tell us that it will feel a “force” easy to calculate,3, 13

which for low speeds [static limit : v << c] reduces to the (radial) force:

F = −1

2
c2g”(1− 2Ng′

c2r
+

1

3
λr2)(

2Ng′

c2r2
+

2

3
λr). (8)

Notice that, with proper care, also in the present case one can introduce a
language in terms of “force” and “potential”; for example in Eq. 8 we defined F ≡
g”d2r/dt2. In Fig. 2 the form is depicted of two typical potentials yielded by the
present theory [cf. Eq. 8’].

At “intermediate distances” —i.e., at the newtonian limit— this force simply
reduces to F ≃ −1

2
c2g”(2Ng′/c2r2 + 2λr/3), that is, to the sum of a newtonian

term and of an elastic term à la Hooke. Let us notice that, in such a limit, the
last expression is valid even when the test particle g” does not posses a small strong
mass, but is —for example— a second quark. Otherwise, our expressions for F are
valid only approximately when also g” is a quark; nevertheless, they can explain some
important features of the hadron constituent behaviour, both for small and for large
values of r.

At very large distances, when r is of the same order of (or is greater than) the
considered hadron radius [r ≥ ∼10−13 cm ≡ 1 fm], whenever we confine ourselves
to the simplest hadrons (and thus choose Λ ≃ 1030 m−2; N ≃ 1038÷39G), we end with
an attractive radial force which is proportional to r:

F ≈ −g”c2λr/3. (9)

In other words, one naturally obtains a confining force (and a confining po-
tential V ÷ r2) able a priori to explain the so–called confinement of the hadron
constituents (in particular, of quarks). Because of this force, the motion of g” can
be regarded in a first approximation as a harmonic motion; so that our theory can



Fig. 2 – In this figure the shape is shown of two typical inter–quark poten-
tials Veff yielded by the present theoretical approach: cf. Eq. 8. We show also
the theoretical energy–levels calculated for the 1−3s1, 2−3s1 e 3−3s1 states
of “Bottomonium” and “Charmonium”, respectively [by adopting for the bot-
tom and charm quark the masses m(b)=5.25 and m(c)=1.68 GeV/c2]. The
comparison with experience is satisfactory:17 see Section 5.

include the various and interesting results already found by different Authors for the
hadronic properties —for instance, hadron mass spectra— just by postulating such a
motion.

Up to now we supposed λ to be positive. But it is worthwhile noticing that
confinement is obtained also for negative values of λ. In fact, with less drastic ap-
proximations, for r ≥ ∼1 fm one gets:

F ≈ −1

3
g”c2λ(r + λr3/3 − Ng′/c2), (9′)

where, for r large enough, the λ2 term is dominating. Let us warn however that,
when considering “not simple” hadrons (so that λ, and moreover N , may change
their values), other terms can become important, like the newtonian one, −Ng′2/r2,
or even the constant term +Nλg′2/3 which corresponds to a linear potential. Let us
observe, finally, how this last equation predict that, for inter–quark distances of the



order of 1 fm, two quarks have to attract each other with a force of some tons : a quite
huge force, especially when recalling that it should act between two extremely tiny
particles (the constituents of mesons and baryons), whose magnitute would increase
with the distance.

Let us pass to consider, now, not too big distances, always at the static limit.
It is then important to add to the radial potential the usual “kinetic energy term”
(or centripetal potential), (J/g”)2/2r2, in order to account for the orbital angular
momentum of g” with respect to g′. The effective potential13 between the two con-
stituents g′, g” gets thus the following form

Veff =
1

2
g”c2[2(

Ng′

c2
)2 1

r2
− 2Ng′

c2

1

r
− 2λNg′

3c2
r +

λ

3
r2 +

1

2
(
λ

3
)2r4] +

(J/g”)2

2r2
, (8′)

which, in the region where GR reduces essentially to the newtonian theory, simplifies
into:

Veff ≈ −Ng′g”/r + (J/g”)2/2r2.

In such a case the test particle g” can set itself (performing a circular motion,
for example: and in Section 7 we shall give more details) at a distance re from the
source–constituent at which V is minimum; i.e., at the distance re = J2/Ng′g”2.
At this distance the “effective force” vanishes. Thus we meet, at short distances,
the phenomenon known as asymptotic freedom: For not large distances (when the
force terms proportional to r and to r3 become negligible), the hadron constituents
behave as if they were (almost) free. If we now extrapolated, somewhat arbitrarily,
the expression for re to the case of two quarks [for example, |g′| = |g”| = go ≃ 1

3
mp],

we would obtain the preliminary estimate re ≈ 1
100

fm. Vice-versa, by supposing —
for instance in the case of baryons, with g ≡ m ≃ mp and N ≃ 1040G— that the
equilibrium radius re be of the order of a hundredth of a fermi, one would get the
Regge–like relation J/h̄ ≃ m2 (where m is measured in GeV/c2).

Let us perform these calculations again, however, by using the complete ex-
pression of Veff . First of all, let us observe that it is possible to evaluate the radius at
which the potential reaches its minimum also in the case J = 0. By extrapolation
to the case of the simplest quarks [for which Ng2/h̄c ≃ 0.2], one finds always at least
one solution, re ≈ 0.25 fm, for λ positive and of the order of 1030 m−2. Passing to
the case J = h̄ (which corresponds classically to a speed v ≃ c for the moving quark),
we obtain under the same hypothesis the value

re ≃ 0.9 fm.

Actually, for positive λ it exists the above solution only . For negative values of λ,
however, the situation is more complex; let us summarize it in the case of the N and
|λ| values adopted by us. One meets —again— at least one solution, which for J = 0
takes the simple analytic form re

3 = 3Ng′/c2|λ|.
More precisely, for λ = −1030m−2 one finds the values 0.7 and 1.7 fm, in

correspondence to J = 0 and J = 1; values that however become 0.3 and 0.6 fm,



respectively, for λ = −1029m−2. In the J = 0 case, at last, two further solutions are
met, the smaller one [for λ = −1030 m−2] being once more re ≃ 0.25 fm.

By recalling that mesons are made up of two quarks (q, q̄), our approach
suggests for mesons in their ground state —when J = 0, at least— the model of
two quarks oscillating around an equilibrium position. It is rather interesting to
notice that for small oscillations (harmonic motions in space) the dynamical group
would then be SU(3). It is interesting to notice, too, that the value mo = hν/c2,
corresponding to the frequency ν = 1023 Hz, yields the pion mass: mo ≃ mπ.

Analogous results have to hold, obviously, for our cosmos (or, rather, for the
cosmoses which are “dual” to the hadrons considered).

7. The Strong Coupling Constant

Here we want to add just that, in the case of a spherically symmetric, static
metric (and in the coordinates in which it is diagonal), the Lorentz factor is propor-
tional to

√
goo, so that the strong coupling constant αS ≡ S in our theory14 assumes

the form:15

αS(r) ≃
N

h̄c

g′

o
2

1 − 2Ng′

o/c
2r + λr2/3

, (10)

since the strong mass g” depends on the speed:

g” =
g”o√
goo

=
g”o

√

1 − 2Ng′

o/r + λr2/3
, (11)

so as the ordinary relativistic mass does. The behaviour of our “constant” αS(r) is
analogous to that one of the perturbative coupling constant of the “standard theory”
(QCD): that is to say, αS(r) decreases as the distance r decreases, and increases as it
increases, once more justifying both confinement and “asymptotic freedom”. Let us
recall that, when15 g”o = g′

o, the definition of αS is αS ≡ S = Ng′2/h̄c.
Since the Schwarzschild–like coordinates (t; r, θ, ϕ) do not correspond, as is

well known, to any real observer, it is interesting from the physical point of view
to pass to the local coordinates (T ; R, θ, ϕ) associated with observers who are at
rest “with respect to the metric” at each point (r, θ, ϕ) of space: dT ≡ √

gttdt;
dR ≡ √−grrdr, where gtt ≡ goo and grr ≡ g11. These “local” observers measure
a speed U ≡ dR/dT (and strong masses) such that

√
gtt =

√
1 − U2, so that Eq. 11

assumes the transparent form

g” =
g”o√
1 − U2

. (11′)

Once calculated (thanks to the geodesic equation) the speed U as a function of
r, it is easy to find again, for example, that for negative λ the minimum value of U2

corresponds to r = [3Ng′

o/|λ|]1/3. While for positive λ we get a similar expression,
i.e., ro ≡ [6Ng′

o/λ]1/3, which furnishes a limiting (confining) value of r, which
cannot be reached by any of the constituents.



Let us finally consider the case of a geodesic circular motion, as described by
the “physical” observers, i.e., by our local observers (even if we find it convenient to
express everything as a function of the old Schwarzshild-deSitter coordinates). If a is
the angular momentum per unity of strong rest-mass, in the case of a test–quark in

motion around the source–quark, we meet the interesting relation g” = g′

o

√

1 + a2/r2,

which allows us to write the strong coupling constant in the particularly simple form14

αS ≃ N

h̄c
g′

o(1 +
a2

r2
). (10′)

We can now observe, for instance, that —if λ < 0— the specific angular
momentum a vanishes in correspondence to the customary geodesic r ≡ rqq =
[3Ng′

o/|λ|]1/3; in this case the test–quark can remain at rest, at a distance rqq from the
source–quark. With the “typical” values ρ = 1041; ρ1 = 1038, and g′

o = mp/3 ≃ 313
MeV/c2, we obtain rqq ≃ 0.8 fm.

8. Outside a Hadron. Strong Interactions among Hadrons

From the “external” point of view, when describing the interactions among
hadrons (as they appear to us in our space), we are in need of new field equations
able to account for both the gravitational and strong field which surround a hadron.
We need actually a bi-scale theory [Papapetrou], in order to study for example the
motion in the vicinity of a hadron of a test–particle possessing both gravitational and
strong mass.

What precedes suggests —as a first step— to represent the strong field around
a source–hadron by means of a tensorial field, sµν , so as it is tensorial (in GR) the
gravitational field eµν . Within our theory,3, 2, 1 Einstein gravitational equations have
been actually modified by introducing, in the neighborhood of a hadron, a strong
deformation sµν of the metric, acting only on objects having a strong charge (i.e., an
intrinsic “scale factor” f ≃ 10−41) and not on objects possessing only a gravitational
charge (i.e., an intrinsic scale factor f ≃ 1). Outside a hadron, and for a “test–
particle” endowed with both the charges, the new field equations are:

Rµν + λsµν = −8π

c4
[Sµν −

1

2
gµνS

ρ
ρ ]. (12)

They reduce to the usual Einstein equations far from the source–hadron, be-
cause they imply that the strong field exists only in the very neighborhood of the
hadron: namely that (in suitable coordinates) sµν → ηµν for r >> 1 fm.
Linear approximation: – For distances from the source–hadron r ≥ ∼1 fm, when
our new field equations can be linearized, the total metric gµν can be written as the
sum of the two metrics sµν and eµν ; or, more precisely (in suitable coordinates):

2gµν = eµν + sµν ≃ ηµν + sµν .



Quantity sµν can then be written as sµν ≡ ηµν + 2hµν , with |hµν | << 1; so that
gµν ≃ ηµν + hµν (where, let us repeat, hµν → 0 per r >> 1 fm). For the sake of
simplicity, we are in addition confining ourselves to the case of positive λ [on the
contrary, if λ < 0, we should13 put sµν ≡ ηµν − 2hµν ].

One of the most interesting results is that, at the static limit (when only soo 6= 0
and the strong field becomes a scalar field), we get that V ≡ hoo ≡ 1

2
(soo−1) = goo−1

is exactly the Yukawa potential :

V = −g
exp[−

√

2|λ|r]
r

≃ −g

r
exp[

−mπrc

h̄
], (13)

with the correct coefficient —within a factor 2— also in the exponential.3, 2, 1

Intense field approximation: – Let us consider the source–quark as an axially
symmetric distribution of strong charge g: the study of the metrics in its neighborhood
will lead us to consider a Kerr-Newman-deSitter (KNdS)–like problem and to look for
solutions of the type “strong KNdS black holes”. We find that —from the “external”
point of view— hadrons can be associated with the above mentioned “strong black-
holes” (SBH), which result to have radii rS ≈ 1 fm.

For r → rS, that is, when the field is very intense, we can perform the approx-
imation just “opposite” to the linear one, by assuming gµν ≃ sµν . We obtain, then,
equations which are essentially identical with the “internal” ones [which is good for
the matching of the hadron interior and exterior!]; a consequence being that what we
are going to say can be valid also for quarks, and not only for hadrons. Before going
on, let us observe that λ can a priori take a certain sign outside a hadron, and the
opposite sign inside it. In the following we shall confine ourselves to the case λ < 0
for simplicity’s sake.

In general for negative λ one meets14 three “strong horizons”, i.e., three values
of rS, that we shall call r1, r2, r3. If we are interested in hadrons which are stable
with respect to the strong interactions, we have to look for those solutions for which
the SBH Temperature16 [= strong field strength at its surface] almost vanishes. It
is worth noticing that the condition of a vanishing field at the SBH surface implies
the coincidence of two, or more, strong horizons;3, 14, 16 and that such coincidences
imply in their turn some “Regge–like” relations among m, λ, N , q and J , if m,
q, J are —now— mass, charge and intrinsic angular momentum of the considered
hadron, respectively. More precisely, if we choose a priori the values of q, J , λ and
N , then our theory yields mass and radius of the corresponding stable hadron. Our
theoretical approach is, therefore, a rare example of a formalism which can yield —at
least a priori— the masses of the stable particles (and of the quarks themselves).

9. Mass Spectra

We arrived at the point of checking whether and how our approach can yield
the values of the hadron masses and radii: in particular for hadrons stable with



respect to strong interactions; one can guess a priori that such values will possess
the correct order of magnitude. Several calculations have been performed by us, in
particular for the meson mass spectra;13, 14 although they —because of our laziness
with respect to numerical elaborations— are still waiting for being reorganized.

Here we quickly outline just some of the results. At first, let us consider the
case of the simultaneous coincidence of all the three horizons (r1 = r2 = r3 ≡ rh). We
get a system of equations that —for example— rules out the possibility that intrinsic
angular momentum (spin) J and electric charge q be simultaneously zero [practically
ruling out particles with J = 0]; it also implies the interesting relation λ−1 ≃ 2rh

2;
and finally it admits (real and positive) solutions only for low values of J , the upper
limit of the spin depending on the chosen parameters.

The values we obtained for the (small) radii and for the masses suggest that the
“triple coincidences” represent the case of quarks. The basic formulae for the explicit
calculations are the following.14 First of all, let us put N = ρ1G, so that g ≡ m. Let
us then define, as usual, Q2 ≡ Nq2/Kc4; a ≡ J/mc; M ≡ Nm/c2, and moreover
δ ≡ 1 + λa2/3. Then, the radii of the stable particles (quarks, in this case) are given
by the simple equation r = 3M/2δ; but the masses are given by the solution of a
system of two Regge–like relations: 9M2 = −2δ3/λ; 9M2 = 8δ(a2 + Q2).

The cases of “double coincidence”, that is, of the coincidence of two (out of
three) horizons only, seem to be able to describe stable baryons and mesons. The
fundamental formulae become, however, more complex.14 Let us define η ≡ a2 + Q2;
σ ≡ δ2 + 4λη; Z ≡ 3δ2 − 4λδη + 18λM2. The stable hadron’s radii are then given
by the relation r ≡ 3Mσ/Z; while the masses are given by the non simple equation
9M2σ(δσ − Z) + 2ηZ2 = 0, which relates M with a, Q and λ. Of course, some
simplifications are met in particular cases. For example, when λ = 0, we get the
Regge–like relation:

M2 = a2 + Q2, (14)

which —when q is negligible— becomes M2 = cJ/G, that is [with c = G = 1]:

m2 = J. (14′)

On the contrary, when J = 0, and q is still negligible, we obtain [always with c =
G = 1]:

9m2 = −λ−1. (15)

Also in the cases of “triple coincidence” simple expressions are found, when |λa2| <<
1. Under such a condition, one meets the simple system of two equations:

9M2 ≃ 8(a2 + Q2); 9m2 ≃ −2λ−1, (16)

where the second relation is written with c = G = 1.
All the “geometric” evaluations of this Section 9 are referred —as we have

seen— only to stable hadrons (i.e., to hadrons corresponding to SBHs with “temper-
ature” T ≃ 0), because we do not know of general rules associating a temperature T



with the many resonances experimentally discovered (which will correspond1, 2, 3 to
temperatures of the order of 1012K, if they have to “evaporate” in times of the order
of 10−23s). Calculations apt at comparing our theoretical approach with experimen-
tal mass spectra (for mesons, for example) have been till now performed, therefore,
by making recourse to the trick of inserting our inter–quark potential Veff , found in
Section 6, into a Schroedinger equation. Also such (many) calculations —kindly per-
formed by our colleagues Prof. J.A. Roversi e Dr. L.A. Brasca–Annes of the “Gleb
Wataghin” Physics Institute of the State University at Campinas (S.P., Brazil)—
have not yet been reordered! Here let us specify, nevertheless, that potential (8’) has
been inserted into the Schroedinger equation in spherical (polar) coordinates, which
has been solved by a finite difference method.13

In the case of “Charmonium” and of “Bottomonium”, for example, the results
obtained (by adopting17 for the quark masses the values m(charm) = 1.69 GeV/c2;
m(bottom) = 5.25 GeV/c2) are the following (Fig. 2). For the states 1−3s1, 2−3s1

and 3−3s1 of Charmonium, we obtained the energy levels 3.24, 3.68 and 4.13 GeV,
respectively. Instead, for the corresponding quantum states of Bottomonium, we
obtained the energy levels 9.48, 9.86 and 10.14 GeV, respectively. The radii for
the two fundamental states resulted to be r(c)=0.42 fm, and r(b)=0.35 fm, with
r(c)> r(b) [as expected from “asymptotic freedom”]. Moreover, the values of the
parameters obtained by our computer fit are actually those expected: ρ = 1041 and
ρ1 = 1038 (just the “standard” ones) for Charmonium; and ρ = 0.5 × 1041 and
ρ1 = 0.5 × 1038 for Bottomonium.

The correspondence between experimental and theoretical results17 is satisfac-
tory, especially when recalling the approximations adopted (in particular, the one of
treating the second quark g” as a test–particle).
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11. Let us recall that the hadron constituents (2 for mesons and 3 for baryons) have
named quarks by M. Gell-Mann. This Anglo-Saxon word, which usually means
mush or also curd, is usually ennobled by literary quotations (for example, Gell-
Mann was inspired —as it is well known— by a verse of J. Joyce’s Finnegans
wake, 1939). Let us here quote that Goethe had properly used such a word in
his Faust, verse 292, where Mephistopheles referring to mankind exclaims: <<In
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