26 research outputs found
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and lowâmiddle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of âsingle-useâ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for lowâmiddle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both highâ and lowâmiddleâincome countries
Identification of SNPs associated with magnesium and sodium uptake and the effect of their accumulation on micro and macro nutrient levels in Vitis vinifera
Macro and micro nutrient accumulation affects all stages of plant growth and development. When nutrient deficiencies or excesses occur, normal plant growth is altered resulting in symptoms such as leaf chlorosis, plant stunting or death. In grapes, few genomic regions associated with nutrient accumulation or deficiencies have been identified. Our study evaluated micro and macro nutrient concentrations in Vitis vinifera L. to identify associated SNPs using an association approach with genotype by sequencing data. Nutrient concentrations and foliar symptoms (leaf chlorosis and stunting) were compared among 249 F1 Vitis vinifera individuals in 2015 and 2016. Foliar symptoms were consistent (â„90%) between years and correlated with changes in nutrient concentrations of magnesium (r = 0.65 and r = 0.38 in 2015 and 2016, respectively), aluminum (r = 0.24 and r = 0.49), iron (r = 0.21 and r = 0.49), and sodium (r = 0.32 and r = 0.21). Single nucleotide polymorphisms associated with symptoms, sodium, and magnesium were detected on each chromosome with the exception of 5, 7 and 17 depending on the trait and genome used for analyses explaining up to 40% of the observed variation. Symptoms and magnesium concentration were primarily associated with SNPs on chromosome 3, while SNPs associated with increased sodium content were primarily found on chromosomes 11 and 18. Mean concentrations for each nutrient varied between years in the population between symptomatic and asymptomatic plants, but relative relationships were mostly consistent. These data suggest a complex relationship among foliar symptoms and micro and macro nutrients accumulating in grapevines
Identification of Vitis Cultivars, Rootstocks, and Species Expressing Resistance to a Planococcus Mealybug
Mealybugs cause economic loss to vineyards through physical damage, fouling fruit and leaves with honeydew, and the transmission of viruses. Planococcus ficus is one of several mealybug species in vineyards, and one that causes economic damage over a relatively large global range. To develop novel management tools, host resistance to P. ficus, which has not previously been identified for any grape cultivars, was studied. Ten grape lines (species, cultivars, and rootstocks) were evaluated for P. ficus resistance across two separate potted plant assays. Significant differences were detected among cultivars and rootstocks in the recorded number of P. ficus juveniles, adults, and egg sacs. Cabernet Sauvignon and Chardonnay were two of the most favorable grape cultivars for mealybug population growth, whereas rootstocks IAC 572, 10-17A, and RS-3 all demonstrated some level of resistance. Southern fire ant (Solenopsis xyloni) was positively associated with mealybug populations, but did not have a negative effect on the observed presence of other arthropod species including potential predators
Population structure of pepper (<i>Capsicum annuum</i>) grouped by fruit end shape categories.
<p>Individuals are represented by their proportionate membership (0 to 1) in cluster 1 (purple), cluster 2 (light yellow), cluster 3 (sky blue), cluster 4 (steel blue), or cluster 5 (orchid). A white space and black tick marks separate subgroups of individuals.</p
Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm.
Eggplant (Solanum melongena L.) is an important solanaceous crop with high phenotypic diversity and moderate genotypic diversity. Ninety-nine genotypes of eggplant germplasm (species (S. melongena, S. incanum, S. linnaeanum and S. gilo), landraces and heirloom cultivars) from 32 countries and five continents were evaluated for genetic diversity, population structure, fruit shape, and disease resistance to Phytophthora fruit rot. Fruits from each line were measured for fruit shape and evaluated for resistance to two Phytophthora capsici isolates seven days post inoculation. Only one accession (PI 413784) was completely resistant to both isolates evaluated. Partial resistance to Phytophthora fruit rot was found in accessions from all four eggplant species evaluated in this study. Genetic diversity and population structure were assessed using 22 polymorphic simple sequence repeats (SSRs). The polymorphism information content (PIC) for the population was moderate (0.49) in the population. Genetic analyses using the program STRUCTURE indicated the existence of four genetic clusters within the eggplant collection. Population structure was detected when eggplant lines were grouped by species, continent of origin, country of origin, fruit shape and disease resistance
Broad sense heritability of fruit phenotypic characteristics.
<p>Broad sense heritability of fruit phenotypic characteristics.</p
Population structure of pepper (<i>Capsicum annuum</i>) grouped by country of origin.
<p>Only countries represented by more than four individuals are included. Individuals are represented by their proportionate membership (0 to 1) in cluster 1 (purple), cluster 2 (light yellow), cluster 3 (sky blue), cluster 4 (steel blue), or cluster 5 (orchid). A white space and black tick marks separate subgroups of individuals.</p
Genetic Diversity, Population Structure, and Heritability of Fruit Traits in <i>Capsicum annuum</i>
<div><p>Cultivated pepper (<i>Capsicum annuum</i>) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness) are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height) to 0.98 (pericarp thickness). When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation.</p></div
Mature pepper fruit phenotypic diversity in size, shape, end shape, and pericarp thickness of a worldwide collection.
<p>Mature pepper fruit phenotypic diversity in size, shape, end shape, and pericarp thickness of a worldwide collection.</p
Genetic differentiation of pepper lines when grouped by fruit shape categories<sup>A</sup>.
<p>Genetic differentiation of pepper lines when grouped by fruit shape categories<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156969#t006fn001" target="_blank"><sup>A</sup></a>.</p