38 research outputs found

    Genealogical typing of Neisseria meningitidis

    Get PDF
    Despite the increasing popularity of multilocus sequence typing (MLST), the most appropriate method for characterizing bacterial variation and facilitating epidemiological investigations remains a matter of debate. Here, we propose that different typing schemes should be compared on the basis of their power to infer clonal relationships and investigate the utility of sequence data for genealogical reconstruction by exploiting new statistical tools and data from 20 housekeeping loci for 93 isolates of the bacterial pathogen Neisseria meningitidis. Our analysis demonstrated that all but one of the hyperinvasive isolates established by multilocus enzyme electrophoresis and MLST were grouped into one of six genealogical lineages, each of which contained substantial variation. Due to the confounding effect of recombination, evolutionary relationships among these lineages remained unclear, even using 20 loci. Analyses of the seven loci in the standard MLST scheme using the same methods reproduced this classification, but were unable to support finer inferences concerning the relationships between the members within each complex

    Estimated Prevalence of Disability and Developmental Delay Among Preschool Children in Rural Malawi: Findings from Tikule Limodzi, a Cross-sectional Survey

    Get PDF
    RLOsEarly childhood development (ECD) is a critical stage in children's lives, influencing future development and social integration. ECD research among children with disability and developmental delay in low‐ and middle‐income countries is limited but crucial to inform planning and delivery of inclusive services. This study is the first to measure and compare the prevalence of disability and developmental delay among children attending preschool centres in rural Malawi

    Changes in serogroup and genotype prevalence among carried meningococci in the United Kingdom during vaccine implementation.

    Get PDF
    BACKGROUND: Herd immunity is important in the effectiveness of conjugate polysaccharide vaccines against encapsulated bacteria. A large multicenter study investigated the effect of meningococcal serogroup C conjugate vaccine introduction on the meningococcal population. METHODS: Carried meningococci in individuals aged 15-19 years attending education establishments were investigated before and for 2 years after vaccine introduction. Isolates were characterized by multilocus sequence typing, serogroup, and capsular region genotype and changes in phenotypes and genotypes assessed. RESULTS: A total of 8462 meningococci were isolated from 47 765 participants (17.7%). Serogroup prevalence was similar over the 3 years, except for decreases of 80% for serogroup C and 40% for serogroup 29E. Clonal complexes were associated with particular serogroups and their relative proportions fluctuated, with 12 statistically significant changes (6 up, 6 down). The reduction of ST-11 complex serogroup C meningococci was probably due to vaccine introduction. Reasons for a decrease in serogroup 29E ST-254 meningococci (from 1.8% to 0.7%) and an increase in serogroup B ST-213 complex meningococci (from 6.7% to 10.6%) were less clear. CONCLUSIONS: Natural fluctuations in carried meningococcal genotypes and phenotypes a can be affected by the use of conjugate vaccines, and not all of these changes are anticipatable in advance of vaccine introduction

    Molecular epidemiology of meningococcal disease in England and Wales 1975–1995, before the introduction of serogroup C conjugate vaccines

    Get PDF
    A comprehensive meningococcal vaccine is yet to be developed. In the absence of a vaccine that immunizes against the serogroup B capsular polysaccharide, this can only be achieved by targeting subcapsular antigens, and a number of outer-membrane proteins (OMPs) are under consideration as candidates. A major obstacle to the development of such a vaccine is the antigenic diversity of these OMPs, and obtaining population data that accurately identify and catalogue these variants is an important component of vaccine design. The recently proposed meningococcal molecular strain-typing scheme indexes the diversity of two OMPs, PorA and FetA, that are vaccine candidates, as well as the capsule and multilocus sequence type. This scheme was employed to survey 323 meningococci isolated from invasive disease in England and Wales from 1975 to 1995, before the introduction of meningococcal conjugated serogroup C polysaccharide vaccines in 1999. The eight-locus typing scheme provided high typeability (99.4 %) and discrimination (Simpson's diversity index 0.94–0.99). The data showed cycling of meningococcal genotypes and antigenic types in the absence of planned interventions. Notwithstanding high genetic and antigenic diversity, most of the isolates belonged to one of seven clonal complexes, with 11 predominant strain types. Combinations of PorA and FetA, chosen on the basis of their prevalence over time, generated vaccine recipes that included protein variants found in 80 % or more of the disease isolates for this time period. If adequate immune responses can be generated, these results suggest that control of meningococcal disease with relatively simple protein component vaccines may be possible

    Identifying Cases of Sleep Disorders through International Classification of Diseases (ICD) Codes in Administrative Data

    Get PDF
    Objectives Prevalence, and associated morbidity and mortality of chronic sleep disorders have been limited to small cohort studies, however, administrative data may be used to provide representation of larger population estimates of disease. With no guidelines to inform the identification of cases of sleep disorders in administrative data, the objective of this study was to develop and validate a set of ICD-codes used to define sleep disorders including narcolepsy, insomnia, and obstructive sleep apnea (OSA) in administrative data. Methods A cohort of adult patients, with medical records reviewed by two independent board-certified sleep physicians from a sleep clinic in Calgary, Alberta between January 1, 2009 and December 31, 2011, was used as the reference standard. We developed a general ICD-coded case definition for sleep disorders which included conditions of narcolepsy, insomnia, and OSA using: 1) physician claims data, 2) inpatient visit data, 3) emergency department (ED) and ambulatory care data. We linked the reference standard data and administrative data to examine the validity of different case definitions, calculating estimates of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).  Results From a total of 1186 patients from the sleep clinic, 1045 (88.1%) were classified as sleep disorder positive, with 606 (51.1%) diagnosed with OSA, 407 (34.4%) with insomnia, and 59 (5.0%) with narcolepsy. The most frequently used ICD-9 codes were general codes of 307.4 (Nonorganic sleep disorder, unspecified), 780.5 (unspecified sleep disturbance) and ICD-10 codes of G47.8 (other sleep disorders), G47.9 (sleep disorder, unspecified). The best definition for identifying a sleep disorder was an ICD code (from physician claims) 2 years prior and 1 year post sleep clinic visit: sensitivity 79.2%, specificity 28.4%, PPV 89.1%, and NPV 15.6%. ICD codes from ED/ambulatory care data provided similar diagnostic performance when at least 2 codes appeared in a time period of 2 years prior and 1 year post sleep clinic visit: sensitivity 71.9%, specificity 54.6%, PPV 92.1%, and NPV 20.8%. The inpatient data yielded poor results in all tested ICD code combinations. Conclusion Sleep disorders in administrative data can be identified mainly through physician claims data and with some being determined through outpatient/ambulatory care data ICD codes, however these are poorly coded within inpatient data sources. This may be a function of how sleep disorders are diagnosed and/or reported by physicians in inpatient and outpatient settings within medical records. Future work to optimize administrative data case definitions through data linkage are needed

    Prevalence of physical frailty including risk factors up to one year after hospitalisation for COVID-19 in the UK: a multicentre, longitudinal cohort study

    Get PDF
    Background: The scale of COVID-19 and its well documented long-term sequelae support a need to understand long-term outcomes including frailty. Methods: This prospective cohort study recruited adults who had survived hospitalisation with clinically diagnosed COVID-19 across 35 sites in the UK (PHOSP-COVID). The burden of frailty was objectively measured using Fried's Frailty Phenotype (FFP). The primary outcome was the prevalence of each FFP group—robust (no FFP criteria), pre-frail (one or two FFP criteria) and frail (three or more FFP criteria)—at 5 months and 1 year after discharge from hospital. For inclusion in the primary analysis, participants required complete outcome data for three of the five FFP criteria. Longitudinal changes across frailty domains are reported at 5 months and 1 year post-hospitalisation, along with risk factors for frailty status. Patient-perceived recovery and health-related quality of life (HRQoL) were retrospectively rated for pre-COVID-19 and prospectively rated at the 5 month and 1 year visits. This study is registered with ISRCTN, number ISRCTN10980107. Findings: Between March 5, 2020, and March 31, 2021, 2419 participants were enrolled with FFP data. Mean age was 57.9 (SD 12.6) years, 933 (38.6%) were female, and 429 (17.7%) had received invasive mechanical ventilation. 1785 had measures at both timepoints, of which 240 (13.4%), 1138 (63.8%) and 407 (22.8%) were frail, pre-frail and robust, respectively, at 5 months compared with 123 (6.9%), 1046 (58.6%) and 616 (34.5%) at 1 year. Factors associated with pre-frailty or frailty were invasive mechanical ventilation, older age, female sex, and greater social deprivation. Frail participants had a larger reduction in HRQoL compared with before their COVID-19 illness and were less likely to describe themselves as recovered. Interpretation: Physical frailty and pre-frailty are common following hospitalisation with COVID-19. Improvement in frailty was seen between 5 and 12 months although two-thirds of the population remained pre-frail or frail. This suggests comprehensive assessment and interventions targeting pre-frailty and frailty beyond the initial illness are required. Funding: UK Research and Innovation and National Institute for Health Research

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore