9 research outputs found

    The Role of PI3K Isoforms in Regulating Bone Marrow Microenvironment Signaling Focusing on Acute Myeloid Leukemia and Multiple Myeloma

    Get PDF
    Despite the development of novel treatments in the past 15 years, many blood cancers still remain ultimately fatal and difficult to treat, particularly acute myeloid leukaemia (AML) and multiple myeloma (MM). While significant progress has been made characterising small-scale genetic mutations and larger-scale chromosomal translocations that contribute to the development of various blood cancers, less is understood about the complex microenvironment of the bone marrow (BM), which is known to be a key player in the pathogenesis of chronic lymphocytic leukaemia (CLL), AML and MM. This niche acts as a sanctuary for the cancerous cells, protecting them from chemotherapeutics and encouraging clonal cell survival. It does this by upregulating a plethora of signalling cascades within the malignant cell, with the phosphatidylinositol-3-kinase (PI3K) pathway taking a critical role. This review will focus on how the PI3K pathway influences disease progression and the individualised role of the PI3K subunits. We will also summarise the current clinical trials for PI3K inhibitors and how these trials impact the treatment of blood cancers

    Myeloma-derived macrophage inhibitory factor regulates bone marrow stromal cell-derived IL-6 via c-MYC

    Get PDF
    Multiple myeloma (MM) remains an incurable malignancy despite the recent advancements in its treatment. The protective effects of the niche in which it develops has been well documented; however, little has been done to investigate the MM cell’s ability to ‘re-program’ cells within its environment to benefit disease progression. Here, we show that MM-derived macrophage migratory inhibitory factor (MIF) stimulates bone marrow stromal cells to produce the disease critical cytokines IL-6 and IL-8, prior to any cell-cell contact. Furthermore, we provide evidence that this IL-6/8 production is mediated by the transcription factor cMYC. Pharmacological inhibition of cMYC in vivo using JQ1 led to significantly decreased levels of serum IL-6—a highly positive prognostic marker in MM patients

    NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts

    Get PDF
    Improvements in the understanding of the metabolic cross-talk between cancer and its micro-environment are expected to lead to novel therapeutic approaches. Acute myeloid leukemia (AML) cells have increased mitochondria compared to non-malignant CD34+ hematopoietic progenitor cells. Furthermore, contrary to the Warburg hypothesis, (AML) relies on oxidative phosphorylation to generate ATP. Here we report that in human AML, NOX2 generates superoxide which stimulates bone marrow stromal cells (BMSC) to AML blast transfer of mitochondria through AML derived tunnelling nanotubes. Moreover, inhibition of NOX2 was able to prevent mitochondrial transfer, increase AML apoptosis and improve NSG AML mouse survival. Although mitochondrial transfer from BMSC to non-malignant CD34+ cells occurs in response to oxidative stress, NOX2 inhibition had no detectable effect on non-malignant CD34+ cell survival. Taken together we identify tumor-specific dependence on NOX2 driven mitochondrial transfer as a novel therapeutic strategy in AML

    CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma

    Get PDF
    Metabolic adjustments are necessary for the initiation, proliferation, and spread of cancer cells. Although mitochondria have been shown to move to cancer cells from their microenvironment, the metabolic consequences of this phenomenon have yet to be fully elucidated. Here we report that multiple myeloma (MM) cells use mitochondrial-based metabolism as well as glycolysis when located within the bone marrow microenvironment (BMM). The reliance of MM cells on oxidative phosphorylation was caused by intercellular mitochondrial transfer to MM cells from neighboring non-malignant bone marrow stromal cells (BMSC). This mitochondrial transfer occurred through tumor-derived tunneling nanotubes (TNT). Moreover, shRNA mediated knockdown of CD38 inhibits mitochondrial transfer and TNT formation in-vitro and blocks mitochondrial transfer and improves animal survival in vivo. This study describes a potential treatment strategy to inhibit mitochondrial transfer for clinical benefit and scientifically expands the understanding of the functional effects of mitochondrial transfer on tumor metabolism

    Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment

    Get PDF
    Despite currently available therapies most patients diagnosed with acute myeloid leukemia (AML) die of their disease. Tumor-host interactions are critical for the survival and proliferation of cancer cells; accordingly, we hypothesise that specific targeting of the tumor microenvironment may constitute an alternative or additional strategy to conventional tumor-directed chemotherapy. Since adipocytes have been shown to promote breast and prostate cancer proliferation, and because the bone marrow adipose tissue (MAT) accounts for up to 70% of bone marrow volume in adult humans, we examined the adipocyte-leukaemia cell interactions to determine if they are essential for the growth and survival of AML. Using in-vivo and in-vitro models of AML we show that bone marrow adipocytes from the tumor microenvironment support the survival and proliferation of malignant cells from patients with AML. We show that AML blasts alter metabolic processes in adipocytes to induce phosphorylation of hormone-sensitive lipase and consequently activate lipolysis, which then enables the transfer of fatty acids from adipocytes to AML blasts. In addition, we report that fatty acid binding protein-4 (FABP4) mRNA is up-regulated in adipocytes and AML when in co-culture. FABP4 inhibition using FABP4 shRNA knockdown or a small molecule inhibitor prevents AML proliferation on adipocytes. Moreover, knockdown of FABP4 increases survival in Hoxa9/Meis1-driven AML model. Finally, knockdown of carnitine palmitoyltransferase IA (CPT1A) in an AML patient-derived xenograft model improves survival. Here we report the first description of AML programming bone marrow adipocytes to generate a pro-tumoral microenvironment

    Acute myeloid leukemia induces pro-tumoral p16INK4a driven senescence in the bone marrow microenvironment

    Get PDF
    Acute myeloid leukemia (AML) is an age-related disease that is highly dependent on the bone marrow (BM) microenvironment. With increasing age, tissues accumulate senescent cells, characterized by an irreversible arrest of cell proliferation and the secretion of a set of proinflammatory cytokines, chemokines, and growth factors, collectively known as the senescence-associated secretory phenotype (SASP). Here, we report that AML blasts induce a senescent phenotype in the stromal cells within the BM microenvironment and that the BM stromal cell senescence is driven by p16INK4a expression. The p16INK4a-expressing senescent stromal cells then feed back to promote AML blast survival and proliferation via the SASP. Importantly, selective elimination of p16INK4a 1 senescent BM stromal cells in vivo improved the survival of mice with leukemia. Next, we find that the leukemia-driven senescent tumor microenvironment is caused by AML-induced NOX2-derived superoxide. Finally, using the p16-3MR mouse model, we show that by targeting NOX2 we reduced BM stromal cell senescence and consequently reduced AML proliferation. Together, these data identify leukemia-generated NOX2-derived superoxide as a driver of protumoral p16INK4a-dependent senescence in BM stromal cells. Our findings reveal the importance of a senescent microenvironment for the pathophysiology of leukemia. These data now open the door to investigate drugs that specifically target the “benign” senescent cells that surround and support AML

    HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia

    Get PDF
    Approximately 80% of patients diagnosed with acute myeloid leukemia (AML) die as a consequence of failure to eradicate the tumor from the bone marrow microenvironment. We have recently shown that stroma-derived interleukin-8 (IL-8) promotes AML growth and survival in the bone marrow in response to AML-derived macrophage migration inhibitory factor (MIF). In the present study we show that high constitutive expression of MIF in AML blasts in the bone marrow is hypoxia-driven and, through knockdown of MIF, HIF1α and HIF2α, establish that hypoxia supports AML tumor proliferation through HIF1α signaling. In vivo targeting of leukemic cell HIF1α inhibits AML proliferation in the tumor microenvironment through transcriptional regulation of MIF, but inhibition of HIF2α had no measurable effect on AML blast survival. Functionally, targeted inhibition of MIF in vivo improves survival in models of AML. Here we present a mechanism linking HIF1α to a pro-tumoral chemokine factor signaling pathway and in doing so, we establish a potential strategy to target AML

    Biallelic TET2 mutations confer sensitivity to 5 '-azacitidine in acute myeloid leukemia

    No full text
    Precision medicine can significantly improve outcomes for patients with cancer, but implementation requires comprehensive characterization of tumor cells to identify therapeutically exploitable vulnerabilities. Here, we describe somatic biallelic TET2 mutations in an elderly patient with acute myeloid leukemia (AML) that was chemoresistant to anthracycline and cytarabine but acutely sensitive to 5 '-azacitidine (5 '-Aza) hypomethylating monotherapy, resulting in long-term morphological remission. Given the role of TET2 as a regulator of genomic methylation, we hypothesized that mutant TET2 allele dosage affects response to 5 '-Aza. Using an isogenic cell model system and an orthotopic mouse xenograft, we demonstrate that biallelic TET2 mutations confer sensitivity to 5 '-Aza compared with cells with monoallelic mutations. Our data argue in favor of using hypomethylating agents for chemoresistant disease or as first-line therapy in patients with biallelic TET2-mutated AML and demonstrate the importance of considering mutant allele dosage in the implementation of precision medicine for patients with cancer
    corecore