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Abstract 

Metabolic adjustments are necessary for the initiation, proliferation, and spread of 

cancer cells. Although mitochondria have been shown to move to cancer cells from 

their microenvironment, the metabolic consequences of this phenomenon have yet 

to be fully elucidated. Here we report that multiple myeloma (MM) cells use 

mitochondrial-based metabolism as well as glycolysis when located within the bone 

marrow microenvironment (BMM). The reliance of MM cells on oxidative 

phosphorylation was caused by intercellular mitochondrial transfer to MM cells from 

neighboring non-malignant bone marrow stromal cells (BMSC). This mitochondrial 

transfer occurred through tumor-derived tunneling nanotubes (TNT). Moreover, 

shRNA mediated knockdown of CD38 inhibits mitochondrial transfer and TNT 

formation in-vitro and blocks mitochondrial transfer and improves animal survival in 

vivo. This study describes a potential treatment strategy to inhibit mitochondrial 

transfer for clinical benefit and scientifically expands the understanding of the 

functional effects of mitochondrial transfer on tumor metabolism. 

 

Statement of Significance 

Multiple myeloma relies on both oxidative phosphorylation and glycolysis following 

acquisition of mitochondria from its bone marrow microenvironment. 
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Introduction 

The process by which a rapidly proliferating cancer cell fuels its metabolic 

requirements is a highly attractive therapeutic target. Warburg stated in 1956 that 

malignant cells generally use the non-mitochondrial based method of glycolysis to 

generate its ATP requirements (1). Multiple myeloma (MM) is a hematologic 

malignancy characterised by the accumulation of monoclonal plasma cells within the 

bone marrow (2) and is reported to be reliant on glycolysis due to its susceptibility to 

glycolysis inhibitors such as dichloroacetate (DCA) (3), as well as an elevated 

glycolytic gene profile (4). However, MM cells do have the capability of using 

mitochondrial based oxidative phosphorylation under ritonavir treatment (5) and HIF-

1 suppression (6).  

 

Oxidative phosphorylation generates a larger quantity of ATP than glycolysis, and 

occurs within the mitochondria of eukaryotic cells (7). This organelle was originally 

thought to reside in its somatic cell for its life, however the Gerdes laboratory showed 

that mitochondria can move between cells (8). This phenomenon has now been 

reported in models of human cancer including lung (9), bladder (10), breast (11) and 

melanoma (12,13). Mitochondrial transfer has also recently been shown patho-

physiologically, not using models, in canine transmissible cancer (14). Bone marrow 

stromal cells, which reside in the MM microenvironment, have been shown to be 

donors in malignant mitochondrial transfer to acute myeloid leukemia blasts (15,16) 

and non-malignant transfer to lung epithelial cells (17). Others have shown non-

malignant transfer of mitochondrial from astrocytes to neurons after stroke is 

controlled by CD38 (18). These studies indicate that the trafficking of mitochondrial 

between cells has a role in adapting metabolic processes in both non-malignant and 

malignant cells.  

 

MM is currently incurable with only half of patients surviving beyond 5 years post 

diagnosis (19). MM is a tumor highly dependent on the bone marrow 

microenvironment (BMM) which functions in a supportive role to promote tumor 

proliferation, survival and migration (20). Preclinical studies of CD38 inhibition in 

myeloma shows that it mediates MM cytotoxicity in the presence of the protective 

bone marrow niche (21) and in early phase clinical studies anti-CD38 directed 
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therapy showed clinical benefit as a single agent in myeloma patients (22,23). 

Furthermore, phase 3 clinical trials in MM patients of anti-CD38 antibody therapy 

given in addition to chemotherapy, have demonstrated improvements in overall 

response rates and progression free survival (24,25) and lower risk of death (26) in 

patients receiving the antibody with chemotherapy compared to chemotherapy 

alone. Daratumumab has now been FDA approved for the treatment of relapse 

refractory myeloma in combination with bortezomib or lenalidomide (27).   

 

In this study, we look to determine first if the MM microenvironment supports MM 

proliferation, by promoting mitochondrial based oxidative phosphorylation. Second, 

we analyse whether the transfer of mitochondria to malignant plasma cells, from 

BMSC, regulates the metabolic process. Next, we aim to dissect the mechanisms 

which facilitate the interaction allowing the BMSC to transfer mitochondria to MM. 

Finally, we aim provide a novel therapeutic paradigm for the targeting of 

mitochondrial transfer as an anti-cancer therapy.    
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Methods 

Primary cell culture  

Patient bone marrow was obtained following informed written consent and under 

approval by the Health Research Authority of the National Health Service, United 

Kingdom (LRECref07/H0310/146) and in accordance with the Declaration of 

Helsinki. All patient details are provided in table 1. Primary MM cells were isolated by 

histopaque density centrifugation and purified by positive selection using magnetic-

activated cell sorting with CD138+ microbeads (Miltenyi Biotec), cell type was 

confirmed by flow cytometry as previously described (28). Bone marrow stromal cells 

(BMSC) were isolated from MM patient samples by adherence to tissue culture 

plastic and were then expanded in Dulbecco’s modified Eagle’s Medium (DMEM) 

containing 10% foetal bovine serum (FBS) and supplemented with 1% penicillin-

streptomycin (Hyclone, Life Sciences) (29). BMSC markers were confirmed using 

flow cytometry for expression of CD90+, CD73+, CD105+ and CD45-. BMSCs were 

passaged three times before use in the assays presented in this manuscript (30). 

 

Human Cell lines 

The MM-derived cell lines were obtained from the European Collection of Cell 

Cultures (ECACC) where they are authenticated by DNA fingerprinting. The cells 

were periodically tested for mycoplasma contamination, using the MycoProbe, 

Mycoplasma Detection Kit purchased from R&D systems (Minneapolis, MN) in Jan 

2018. These cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 

medium supplemented with 10% foetal bovine serum, 1% penicillin-streptomycin 

(Hyclone, Life Sciences). All cell lines were used between passage 4-15 from the 

time of purchase. 

 

MitoTracker based mitochondrial transfer assay 

To assess and quantify mitochondrial transfer from BMSC to MM cells the 

MitoTracker based staining assay developed in our laboratory was used (15). Briefly, 

human primary BMSC were stained with 200 nM MitoTracker Green FM for 1 hour. 

Primary and cell line MM were also stained with 200 nM MitoTracker Green FM for 

30 minutes, to eliminate dye leakage. Both cell types were washed three times in 

phosphate buffered saline (PBS) to remove the unbound probe. Stained MM cells 

were added to stained BMSC at a 5:1 ratio for 24 hours. Stained MM cells were also 
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grown in mono-culture for 24 hours as a control. After incubation MM cells were 

removed from BMSC and MitoTracker fluorescence in these cells was analysed 

using the CyFlow Cube 6 flow cytometer (Sysmex, Milton Keynes). For mitochondrial 

quantification, the difference in MitoTracker fluorescence between MM cells grown 

with and without BMSC provided a baseline mitochondrial transfer. The effect of 

Cytochalsin B (350 M), Dansylcadavarine (50 M), Bortezomib (10 nM), CD38-

blocking antibody or CD38 knockdown (KD) MM cells on mitochondrial transfer was 

achieved using this method.  

 

rLV.EF1.mCherry mitochondrial transfer assay 

rLV.EF1.mCherry lentivirus was purchased from Clontech Takara Bio Europe (Saint-

Germain-en-Laye, France). Primary human BMSC were transduced with this virus 

for 72 hours and cultured for 1 week before use, to ensure no residual lentivirus 

remained. RPMI cells were cultured with rLV.EF1.mCherry BMSC for 1 week, and 

imaged using the Zeiss LSM 800 Axio Observer.Z1 confocal microscope with a 40X 

water objective (Carl Zeiss). 

 

MM xenograft model 

For this study the NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice (The Jackson 

Laboratory, Bar Harbour, ME, USA RRID:IMSR_NM-NSG-001). were housed under 

specific pathogen-free conditions in a 12/12-hour light/dark cycle with food and water 

provided ad libitum in accordance with the Animal Scientific Procedures Act, 1986 

(UK) and under UK Home Office and Institutional Animal Welfare and Ethics Review 

board approvals. 0.5x106 MM1S or U266 MM cell lines were intravenously injected 

into non-irradiated 6-8 week old NSG mice for mouse mtDNA detection. 1.0x106 

MM1S-luc cells were injected for the ex vivo Seahorse extracellular flux assay. 

0.5x106 MM1S-luc cells were injected for the CD38 KD xenograft. Mice injected with 

MM1S-luc cells were monitored via in-vivo bioluminescent imaging (Bruker, Coventry 

UK), as previously described (31). At pre-defined humane end points mice were 

sacrificed (6-12 weeks post injection), bone marrow isolated and engraftment 

determined. Human MM cells were purified from the heterogeneous bone marrow by 

MACS microbeads. This purified human MM cell population was used for the PCR 
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and agarose gel electrophoresis. Levels of mitochondria in the purified MM1S-luc 

populations was achieved using MitoTracker Green FM staining and flow cytometry. 

 

Seahorse extracellular flux assay 

Oxidative phosphorylation and glycolysis rates were assessed in MM cells using the 

Seahorse XFp Analyzer, as previously described (29) and the Seahorse XF Mito 

stress test kit (Agilent Seahorse Bioscience), according to manufacturer’s 

specifications. Co-cultures of primary human BMSC and MM cells were prepared in 

a 1:5 ratio for 24 hours. Further information can be found in supplementary methods 

section.  

 

Murine mitochondrial DNA detection 

Murine mitochondrial DNA (mtDNA) detection was used to determine if inter-species 

mitochondrial transfer occurred from murine BMSC to human MM cells, as 

previously described (15). DNA from the purified human MM cells were extracted 

using the GenElute mammalian DNA miniprep kit. 8 ng of DNA was added to the 

PCR reaction containing Sybr green and murine primers provided in the Detroit R&D 

kit. PCRs were amplified for 40 cycles (95°C/15 seconds, 60°C/60 seconds) on a 

Roche 96-well LightCycler480. PCR products were run on a 1.25% agarose gel at 

100V for 1 hour. Detection was performed by Chemdoc-It2 Imager (UVP) and 

analysed using ImageJ. We were able to quantify movement of mitochondria 

between murine bone marrow cells and human MM cells using species specific 

Taqman probes purchased from ThermoFisher (Waltham, MA, USA). These 

contained murine and human ND1 mitochondrial probes (on VIC and FAM 

fluorophores) along with murine and human TERT genomic probes. Extracted DNA 

was amplified for 40 cycles (95C/15 seconds, 60C/60 seconds) on a Roche 96-well 

LightCycler480. mtDNA copy numbers were determined for both human and murine 

mitochondria using the ∆∆Ct method, using human genomic TERT to normalise 

results. These values were used to generate the percentage of mouse mitochondria 

in the human MM cells, ultimately used to quantify mitochondrial transfer. 

 

Confocal Microscopy 
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To visualise TNTs BMSC were stained with 200 nM MitoTracker green FM and MM 

cells were stained with Vybrant Dil stain to visualise cell membranes. After co-culture 

cells were fixed with 4% paraformaldehyde and imaged. In addition, the 

rLV.EF1.AcGFP-Mem9 lentivirus was purchased from Clontech Takara Bio Europe 

(Saint-Germain-en-Laye, France), enabling the stable tagging of plasma membranes 

with a GFP fluorophore. MM1S cells were transduced with this lentivirus and cultured 

for 72 hours prior to use. BMSC were stained with 200nM MitoTracker CMXRos and 

cultured with MM1S cells transduced as above for 24 hours, before fixation with 

paraformaldehyde. Confocal images were acquired on Zeiss LSM 800 Axio 

Observer.Z1 confocal microscope with a 40X water objective (Carl Zeiss) and a 

Zeiss AxioPlan 2ie (Carl Zeiss). The frequency of TNT formation was analysed 

through quantifying TNT anchor points (TAPs), on BMSC after co-culture with MM 

cells, per confocal image as previously described (15). TAPs were also assessed 

under Cytochalasin B treatment and with CD38 KD MM cell lines. 
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Results 

MM metabolic plasticity 

To determine the role of the bone marrow microenvironment on metabolism of 

malignant plasma cells we analysed the metabolic output (OCR and ECAR) of 

primary MM cells, at point of isolation from the human bone marrow and compared 

this to MM cell lines grown in culture. Figures 1A and B show that primary MM cells 

(n=4) have increased mitochondrial based metabolism compared to cell lines (n=4). 

The levels of glycolysis, measured by extracellular acidification, is lower in primary 

MM compared to MM cell lines (Figure 1C).  To further investigate this difference in-

vivo we compared the OCR and lactate levels in MM1S cells cultured in-vitro to 

MM1S cells post engraftment in NSG mice. We found increased mitochondrial based 

metabolism in the MM1S isolated from the mouse compared to the cells grown in-

vitro (Figures 1D and E), with no difference observed in glycolysis levels (Figure 1F). 

Next, we compared the bioenergetics of MM cell lines grown alone or with primary 

bone marrow stromal cells (BMSC). Increased mitochondrial metabolism was 

observed in cell lines cultured with BMSC compared to cell lines cultured alone 

(Figure 1G, H, I).  Finally, we show that MM cell lines have increased ATP 

production and proliferation when cultured with BMSC (Figure 1J).  

 

To determine whether the increase in mitochondrial metabolism is due to the direct 

contact between BMSC and MM cells, we repeated the Seahorse extracellular flux 

assay with MM cells cultured for 24 hours in BMSC conditioned medium +/- 0.2µM 

filtration. The increased mitochondrial metabolism and increase in ATP production is 

not observed in MM cultured in BMSC conditioned medium (Figure 1K and L); 

highlighting the need for direct contact between BMSC and MM cells for the bio-

energetic effect observed. To further examine this process, we treated BMSC with 

25µM Rotenone to inhibit BMSC mitochondria. Figure 1M presents that MM cells 

cultured on Rotenone treated BMSC have lower levels of mitochondrial respiration. 

Furthermore, the addition of dimethyl succinate directly to MM cells (without BMSC) 

had no effect on OCR (Figure S1A). This shows that the mitochondrial metabolic 
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status of BMSC plays a role in the bio-energetic flexibility in MM cells after culture 

with BMSC. Furthermore, we isolated mitochondria from BMSC and MM cells and 

analysed the levels of OCR. We found BMSC mitochondria to have a 10-fold 

increase in OCR compared to MM cells, highlighting that BMSC mitochondria are 

more functional (Figure S1B). Finally, we examined the effect of 10mM glucose, 

compared to 2.5mM, on mitochondrial respiration in MM cells. Figure 1N shows that 

the same increase in mitochondrial respiration is observed between the two glucose 

conditions. 

 

Mitochondria are transferred from BMSC to Multiple Myeloma cells  

To understand how MM can switch on oxidative phosphorylation when in the 

presence of BMSC we explored the possible transfer of mitochondria from BMSC to 

MM. The transfer of mitochondria from non-malignant cells of the tumor 

microenvironment to malignant cells has recently been reported in a number of 

cancers including acute myeloid leukemia and melanoma (9,11,12,15,16). To 

determine if MM acquire mitochondria from BMSC to support oxidative 

phosphorylation, we employed three methods. First, we used a MitoTracker 

mitochondrial transfer assay (15); where both BMSC and MM cells are stained with 

MitoTracker and cultured together and any increases in MitoTracker fluorescence 

after co-culture in tumor cells shows mitochondrial transfer has occurred. Primary 

MM samples (n=10) cultured on BMSC have increased MitoTracker levels compared 

to mono-cultured MM cells (Figure 2A). This is also the case for 4/5 MM cell lines 

tested; MM1S, U266, RPMI and H929, shown in Figure 2B. Second, we infected 

primary BMSC with an rLV.EF1.mCherry lentivirus for stable production of 

mitochondria-incorporated mCherry tagged protein. Figure 2C shows upon the 

culture of MM cell lines on these infected BMSC, the MM acquire the mCherry 

fluorescence.  

 

Finally, we used an in-vivo model to determine if mitochondrial transfer occurs within 

the malignant BM. To do this MM1S and U266 MM cell lines were engrafted into 

NSG mice, following tumor engraftment we isolated the human MM cells and 

determined if mouse mtDNA could be detected in human MM cells after extraction 

from mouse BM. We transplanted 3 animals with MM1S and 3 with U266 MM cells, 

all animals engrafted with the MM cell line (Figure S2A). Human MM cells were 
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sorted from mouse bone marrow cells, achieving a 98.53% human population 

(Figure S2B). We extracted DNA from the purified MM population and performed a 

PCR analysing mouse mitochondrial DNA and mouse genomic DNA.  Figure 2D 

shows that MM cells isolated from engrafted NSG mice contained mouse 

mitochondrial DNA but not mouse genomic DNA.  

 

To determine whether the mitochondria that enter the malignant plasma cells are 

functional, we treated MM cell lines and primary MM cells (n=5) with rotenone to 

inhibit mitochondrial function and assess whether function can be restored by co-

culture with BMSC. Figure 2E shows that primary MM have reduced TMRM 

fluorescence when treated with rotenone but this is prevented when cultured on 

BMSC. Figure 2F shows that TMRM fluorescence is higher in rotenone treated MM 

that have been cultured with BMSC compared to mono-culture. Since oxidative 

stress increases mitochondrial transfer from non-malignant cells to malignant cells 

(15) and chemotherapy treatment induces oxidative stress, we wanted to determine 

if the MM chemotherapy drug, bortezomib, increased mitochondrial transfer. We 

found that the addition of bortezomib to the co-culture, between BMSC and primary 

MM cells (n=7), increased mitochondrial transfer (Figure 2G). This was also the case 

in four MM cell lines, where mitochondrial transfer was increased (Figure 2H).  

 

Additionally, we quantified the levels of transfer in-vitro using qPCR with species 

specific Taqman probes. We cultured human MM cell lines with the murine BMSC 

cell line M2-10B4 for 24 hours, extracted DNA and carried out a qPCR with probes 

designed to detect human and murine ND1. We found 3% of the total mitochondria 

in the human MM cell to be of mouse origin (Figure S3A). Finally, to demonstrate 

that the 3% of transferred mitochondria are having significant effects on MM cell 

OXPHOS we generated rho0 BMSC (Figure S3B) and cultured MM cells on both 

rho0 BMSC and control BMSC. Figure 2I shows that MM cells cultured on rho0 

BMSC have lower levels of mitochondrial respiration (basal and maximal) compared 

to MM cells cultured on control BMSC.  

 

Mitochondrial transfer in Multiple Myeloma is via TNTs  

Mitochondria have been reported to move via both TNTs (10,15,32) and endocytosis 

(16). To understand how mitochondria move to MM we used TNT and endocytosis 
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inhibitors, Cytochalasin B and Dansylcadavarine respectively. Cytochalasin B 

reduced mitochondrial transfer to MM cell lines by up to 46.19% (Figure 3A), 

whereas there was no significant reduction observed with Dansylcadavarine (Figure 

3B). We also found no mitochondrial transfer occurred from BMSC to malignant 

plasma cells when MM were cultured in a transwell system (Figure S4). Next, we 

used fixed cell confocal microscopy to visualise the highly dynamic TNTs. To do this 

we stained MM cells with the Vybrant lipid stain (red) and the mitochondria in BMSC 

with MitoTracker Green stain and then cultured the cells together for 24 hours. 

Following co-culture, the cells were fixed and TNT formation was detected using 

confocal microscopy. We observed red TNTs formed between BMSC and the MM 

cell line MM1S (Figure 3C) and green mitochondria from the BMSC located in the 

MM1S cells. Additionally, we stably expressed GFP in the plasma membrane of MM 

cells, using a lentivirus, and cultured them with MitoTracker Red CMXRos. We 

visualised green TNTs between MM cells and BMSC, using fixed cell confocal 

microscopy, with red mitochondria within the nanotube (Figure 3D and E). Using this 

method, we found approximately 60% of the MM cells had visible TNT projections 

(Figure S5A).  

 

To quantify the number of TNTs formed during a co-culture we used TNT anchor 

points (TAPs) and confocal microscopy, as previously described (15). TAPs are 

residual plasma cell derived Vybrant DiI stain which remains on BMSC after TNT 

contact. TAPs can be observed in co-cultures of MM cells and BMSC (Figure 3F). 

We show that TAPs can also be visualised between GFP plasma membrane tagged 

MM cells and MitoTracker CMXRos stained BMSC (Figure S5B and C). 

Quantification of TAPs in four MM cell lines, shows a median of 232.5 (range, 218-

278) - TAPs per confocal image (Figure S6). Upon Cytochalasin B treatment, the 

number of TAPs was significantly reduced (median reduction: 75.09%, range: 71.3-

79.27%) (Figure 3G). No TAPs are formed when MM cells are cultured in a transwell 

system or when medium from Vybrant DiI stained MM cells is added to BMSC, 

therefore confirming that TAPs are only present when the two cell types are in direct 

contact (Figure S7). 

 

CD38 inhibition prevents mitochondrial transfer and TNT formation  
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Hayakawa and colleagues recently reported that mitochondria are released by 

astrocytes as mitochondria-containing particles, in a CD38-dependent process, and 

recaptured by neurons (18). Studies have shown that CD38 expression in MM is 

high compared to non-malignant plasma cells (33).  Therefore, we correlated the 

CD38 expression levels to mitochondrial transfer levels of the MM cell lines and 

primary MM cells (n=12). We found there to be a strong correlation (R=0.7915; 

P=0.0013) (Figure 4A). Using a CD38 blocking antibody, mitochondrial transfer to 

primary MM is significantly reduced (n=8) (Figure 4B). Knockdown of CD38 in the 

MM cell lines; MM1S, U266, RPMI and H929 (Figure 4C and Figure S8) reduced 

mitochondrial transfer from BMSC to MM (Figure 4D). We next analysed the cell 

viability and levels of apoptosis in CD38 KD and control KD cells cultured with 

BMSC. We found there to be decreased cell viability and increased levels of 

apoptosis in CD38 KD cells compared to control KD cells (Figure 4E and F).  

 

A recent study identified that all-trans retinoic acid (ATRA) increases CD38 

expression on AML (34). We next identified if this was the case for MM. Figure 4G 

and H show CD38 is upregulated in MM cells after 1 µM ATRA treatment both at 

RNA and protein levels. We tested whether this increase in CD38 induces 

mitochondrial transfer, Figure 4I shows that this is the case with increased levels of 

mitochondrial transfer found in three MM cells lines tested. Taken together these 

results show functionally that mitochondrial transfer from BMSC to MM cells requires 

CD38 and supports multiple myeloma growth and survival. 

 

Tumor cell CD38 supports the formation of TNTs 

CD38 is known to facilitate the adhesion of leukocytes to endothelial cells (35), 

therefore we hypothesised that CD38 has a role in the formation of the TNT. TAP 

quantification was used in co-cultures between BMSC and control KD or CD38 KD 

MM cell lines. Figure 5A shows reduced TAP formation by U266 and RPMI in CD38 

KD cells. This result is replicated with MM1S and H929 MM cell lines, Figure 5B. 

Observations show that TAP formation leaves some residual MM cell membrane on 

the BMSC.  To determine if MM derived CD38 is part of this residual membrane that 

is left on the BMSC after TAP formation flow cytometry was used to detect CD38 

expression on MM and BMSC before and after co-culture.  Figure 5C shows that 

CD38 expression is lower on MM after co-culture with BMSC, whereas CD38 can be 
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detected on BMSC after MM co-culture (Figure 5D). Figure 5E shows that CD38 

localises to TAPs on BMSC after co-culture with MM.   

 

Targeting CD38 in-vivo blocks mitochondrial transfer and improves animal 

survival 

To determine the in-vivo significance of CD38 inhibition on mitochondrial transfer we 

engrafted control KD and CD38 KD MM1S-luc cells into NSG mice. MM disease 

progression in these mice was analysed weekly by live animal bioluminescence, 

which revealed that there was consistently reduced tumor burden in the bone 

marrow with CD38 KD cells (Figure 6A). Survival of mice transplanted with CD38 KD 

cells had a significantly increased survival time compared to control KD cells (Figure 

6B) but no difference in the growth capability when cultured in-vitro (figure 6C). 

Analysis of the BM confirmed engrafted into NSG mice (Figure S9).  

 

To determine if mitochondrial transfer was affected by CD38 KD we assessed the 

levels of mitochondria post-engraftment in the human MM cell population, using 

MitoTracker Green staining. MM cells post-engraftment, have significantly reduced 

mitochondrial levels in CD38 KD cells compared to control KD cells, however no 

difference was observed when cultured in-vitro (Figure 6D and 6E).  Finally, we 

measured the mitochondrial respiration rates in CD38 KD MM1S cells grown in-vitro 

with and without BMSC. Figure 6F and 6G shows that there is significant reduction in 

mitochondrial respiration in CD38 KD cells grown with BMSC compared to control 

KD cells.  No difference in mitochondrial respiration was observed between CD38 

KD and control KD cells grown without BMSC. These results identify in-vivo, a 

functional, pro-tumoral role for CD38-driven mitochondrial transfer in MM. 
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Discussion  

The biologic phenomenon of mitochondrial trafficking between non-malignant cells 

and malignant cells is increasingly becoming recognised as part of the cancer 

phenotype. This process provides the oxidative phosphorylation machinery to enable 

increased ATP production to aid cancer progression. Here we examine the metabolic 

changes resultant from mitochondrial transfer in multiple myeloma which to date has 

been regarded as a glycolytic tumor (3-5).  

 

In this study, we investigate the influence of the BM on the energy output of MM. MM 

cells are known to generally use the non-mitochondrial based process of glycolysis 

to generate its ATP and have been shown to be susceptible to glycolysis inhibitors 

(3,5), these studies have only focussed on MM cell lines not in the presence of their 

protective microenvironment. The study by Dalva-Aydemir and colleagues show that 

MM cell lines have the capability of undergoing functional oxidative phosphorylation 

after treatment with the glycolysis inhibitor ritonavir (5). Further data proposing a 

reliance on glycolysis in MM was provided by a Fujiwara et al (2013) who showed 

increased expression of genes associated with a glycolytic profile in primary MM. 

Moreover, others have shown that PET imaging can be used in the diagnosis of 

myeloma and results show that high glucose uptake is associated with poor 

prognosis (36,37). In our study, we show that MM within the BMM utilise oxidative 

phosphorylation and glycolysis to provide the necessary energy for survival and 

proliferation. Interestingly, others have shown that that glucose can feed the TCA 

cycle via circulating lactate derived from glycolysis (38). Moreover, the authors of this 

manuscript show that lactate (derived from glycolysis) is a primary TCA substrate in 

lung tumours. Another study shows that lactate can feed the TCA cycle in both 

human and mouse tumours (39).  Therefore, we hypothesise based on these reports 

and data from our own experiments that in myeloma (and potentially other tumors) 

glucose is used by glycolysis (PET scan positive); the metabolite, lactate, is then fed 

into the TCA cycle to generate ATP by oxidative phosphorylation in presence of 

functional mitochondria, which have been derived from the bone marrow stromal 

cells. 

 

We demonstrate that mitochondrial trafficking from BMSC to MM orchestrates this 

plasticity in MM metabolism. Cytochalasin B (which inhibits TNT formation) reduced 
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mitochondrial transfer to MM cell lines by approximately one half, establishing 

mechanistically that MM can be added to an emerging list of tumors which are 

capable of acquiring mitochondria from neighbouring non-malignant cells through 

TNTs (11,15,22,32). Furthermore, transferred mitochondria were found to 

metabolically promote oxidative phosphorylation, which was functionally beneficial to 

the tumor and remained so in the presence of chemotherapy treatment. Pro-tumoral 

mitochondrial transfer therefore can be considered part of the malignant phenotype 

of the disease and in addition contributes to the cancer cell survival response to 

chemotherapy. As the number of tumors in which this phenomenon is identified 

grows, it becomes increasingly likely that mitochondrial transfer through TNTs forms, 

more broadly, a fundamental component of a common malignant phenotype. 

 

CD38 has a dual role as both a receptor involved in the migration of leukocytes (40) 

and as an ectoenzyme catalysing the formation of ADPR from NAD+ (41). Originally 

thought to be expressed only on hematopoietic and neuronal cells, CD38 is now 

known to be expressed on many other cell types such as prostate (42), lung (43) and 

skin cells (44). CD38 has recently been shown to have a role in the movement of 

mitochondria between astrocytes to damaged neurons post stroke (18). In this study 

mitochondria were shown to move in micro-vesicles which enabled the restoration of 

metabolic potential and survival of neurons after stroke, this process was shown to 

be dependent on CD38.  Others have shown that LPS induces mitochondrial transfer 

from BMSC to alveoli (17) and LPS can induce CD38 upregulation (45). We further 

present that mitochondrial transfer in MM is via a CD38-dependant mechanism, 

independent of micro-vesicle transfer. CD38 inhibition reduced TAP formation in our 

study directly linking MM nanotube attachment to non-malignant stromal cells and 

tumor CD38 expression. Metabolically we observed a significant reduction in 

mitochondrial respiration in CD38 KD MM cells grown with BMSC compared to 

control KD cells (and this was only seen when cells were co-cultured with stromal 

cells rather than monoculture). Functionally in-vivo CD38 KD improved animal 

survival and tumor cells from CD38 KD MM contained significantly fewer 

mitochondria. These data establish that mitochondrial transfer in MM is biologically 

and metabolically relevant and furthermore leads us to hypothesise that similar 

CD38 driven mitochondrial transfer may be relevant in other malignancies. Presently 

it remains unexplained whether mitochondrial transfer occurs through CD38 activity 
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as a cell surface receptor or ectoenzyme or through a hitherto unknown function of 

CD38. 

 

Drugs targeting CD38 have recently been shown to be well tolerated and clinically 

efficacious in early phase studies of the treatment of relapsed refractory MM (23).  

Pre-clinical studies found that the anti-CD38 antibody daratumumab mediates MM 

cytotoxicity in the presence of the protective bone marrow, via immune mediated 

killing, either antibody-dependent cell-mediated cytotoxicity (ADCC) or complement-

dependent cytotoxicity (CDC)  (21,22). As daratumumab also downregulates CD38+ 

regulatory T and B cells, a combination with immunomodulatory drugs has been 

postulated to be advantageous. The use of daratumumab containing treatment 

combinations has shown significant clinical benefit in patients with both previously 

untreated and relapsed MM (24-26). Although we have not tested daratumumab in 

this study, our results provide an alternative mechanism of action of drugs targeting 

CD38, showing that inhibiting CD38 can reduce mitochondrial transfer. Inhibition of 

mitochondrial transfer also significantly reduces the mitochondrial oxidative 

metabolism in the MM cell when cultured with BMSC. We show in mouse models 

that MM disease progression is reduced when CD38 is knocked down in MM cells, 

we assign this phenotype in part to reduced mitochondrial transfer levels. Moreover, 

to overcome MM relapse following the use of chemotherapy agents such as 

bortezomib, we propose the testing of combinations of drugs targeting CD38 with 

established chemotherapy agents including cytotoxics and proteasome inhibitors. If 

anthracyclines and proteasome inhibitors are known to induce mitochondrial transfer 

then conceptually anti-CD38 therapy may work well as an adjunct in multi-agent 

combinations.   

 

For mitochondrial transfer to be targeted therapeutically in the clinic, viable molecular 

targets involved in the transfer process need to be elucidated. We recently identified 

that NOX2 derived superoxide from AML, is crucial for mitochondrial transfer to 

occur in this malignancy (15). However, inhibitors of NOX2 are not clinically available 

and moreover toxicity may be present a problem with such a strategy as deletion of 

NOX2 in humans frequently leads to death in the first decade of life (46). Here our 

results identify CD38 as a viable molecular target to reduce mitochondrial transfer 

between non-malignant and malignant cells, with drugs presently available for use 
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and/or in advanced stages of pre-clinical development. With CD38 expression now 

known on a wide variety of malignant cells (47), our data leads us to hypothesise 

that CD38 has a potential clinical role in other cancers with mitochondrial transfer 

systems. Furthermore, we should look to identify alternate functional receptors in 

non-CD38 expressing tumors, with possible candidates including CD157, the only 

other known member of the CD38 superfamily.  

 

In this study, we present a paradigm to target mitochondrial transfer as a means to 

perturb tumor metabolism and function as an anti-cancer therapeutic strategy. Here 

we show that CD38 is required for the formation of TNTs facilitating pro-tumoral 

mitochondrial transfer in MM. We show increased levels of apoptosis are observed in 

malignant plasma cells when the number of mitochondria transferred is reduced 

demonstrating this process is pro-tumoral in MM. Moreover, BMSC derived 

mitochondria are more functional than MM derived mitochondria, therefore it is 

metabolically advantageous to the MM cell to acquire the BMSC mitochondria. 

Alternate mechanisms exist to enhance tumoral metabolic activity such as 

acquisition of extracellular metabolites (48). However, this does not appear to be a 

significant factor in MM as in our experiments mitochondrial respiration remained 

constant when metabolite containing BMSC medium was added to MM indirectly and 

when dimethyl succinate was added to MM cells independently of BMSC.  

 

Overall the trafficking of mitochondria allows MM cells to switch on mitochondrial 

oxidative metabolism to increase ATP production. Through CD38 inhibition, 

mitochondrial transfer is reduced in-vitro and in-vivo and MM disease progression is 

reduced increasing animal survival. Drugs targeting CD38 are presently being used 

to treat MM and optimum combinations are being clinically studied. The data 

presented here explains that CD38 inhibition in MM is therefore a viable treatment 

strategy to inhibit mitochondrial transfer for clinical benefit. Our study accordingly 

provides the scientific rationale and metabolic basis for inhibiting mitochondrial 

transfer in MM, we also provide a biologic rationale for the selection of appropriate 

drugs to be used in combination with mitochondrial transfer blocking agents and 

finally we propose the potential of translating these findings to other malignancies 

and diseases. 
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MM# Sex Age Isotype % 

Plasmacytosis 

#1 M 82 IgG 90 

#2 F 76 Kappa LC 70 

#3 F 79 IgA 90 

#4 F 75 Lambda LC 65 

#5 M 90 IgG 90 

#6 M 96 IgG 25 

#7 F 89 IgG 30 

#8 M 62 IgG 65 

#9 F 75 IgA 50 

#10 M 73 Kappa LC 75 

#11 M 78 IgG 90 

 

Table 1. Patient information of primary MM samples used in this study. 
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Figure Legends 

Figure 1. MM favours oxidative phosphorylation in the presence of the BMM. 

Primary MM cells were analysed using the Seahorse extracellular flux assay with 

Mito Stress kit. All Seahorse extracellular flux experiments were carried out in 

Seahorse conventional Mitostress base media containing 2.5/10mM Glucose, 2mM 

glutamine and 1mM pyruvate. (A) Oxygen consumption rate (OCR) of two primary 

MM cells and two MM cell lines are presented. (B) Basal mitochondrial respiration of 

MM cell lines (n=4) vs primary MM cells (n=4). (C) Basal glycolysis rates of MM cell 

lines (n=4) vs primary MM cells (n=4). (D-F) MM1S-luc cells were injected in NSG 

mice (n=6), 2 weeks after injection the MM cells were sorted from the mouse bone 

marrow. (D) Oxygen consumption rate (OCR) of MM1S cells grown in-vitro and 

MM1S cells isolated from mice. Basal mitochondrial respiration (E) and glycolysis 

rates (F) of MM1S cells grown in-vitro and MM1S cells isolated from mice. (G-I) MM 

cell lines were grown with and without BMSC for 72 hours, MM cells were then 

analysed by Seahorse. (G) Oxygen consumption rate (OCR) of MM1S cells grown 

with and without BMSC. Basal mitochondrial respiration (H) and glycolysis rates (I) of 

MM1S, U266 and RPMI grown with and without BMSC. (J) Growth capacity and ATP 

production was measured in MM1S, U266 and RPMI grown with and without BMSC 

for 72 hr. (K and L) MM cells were cultured in BMSC conditioned medium +/- 0.2µm 

filtration for 24 hours, followed by Seahorse extracellular flux analysis (K) or 

CellTitre-Glo ATP analysis. (M) BMSC were treated with 25µM rotenone or DMSO 

for 30 minutes before co-culture with MM cells. Mitochondrial respiration was 

measured in MM using the Seahorse extracellular flux assay. (N) The seahorse 

extracellular flux assay in (H) was repeated in 10mM glucose MitoStress 

conventional base medium. 

 

Figure 2. Mitochondria are transferred from BMSC to MM cells in-vitro and in-

vivo. Primary MM cells (n=10) (A) or MM cell lines (n=5) (B), were pre-stained with 

200nM MitoTracker Green FM, were cultured for 24 hours on BMSC stained with 

MitoTracker Green FM. MitoTracker fluorescence was analysed in the MM cells by 

flow cytometry. (C) RPMI MM cell line was grown on rLV.EF1.mCherry BMSC, 

mCherry acquisition by MM cells was detected by fluorescent microscopy. (D) NSG 

mice were injected with either MM1S-luc cells or U266-Luc cells. 2 weeks post 
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engraftment MM cells were isolated from the BM and total DNA was extracted from 

the purified MM populations and analysed by PCR for murine and human specific 

mitochondrial and genomic DNA. PCR products were visualised by agarose gel 

electrophoresis. (E) Primary MM#1 was treated with 25 M rotenone or DMSO for 15 

minutes, then washed and cultured with or without BMSC. MM cells were then 

stained with 30 nM TMRM for 15 minutes before flow cytometry analysis. 

Representative flow cytometry plots are presented. (F) Primary MM and MM cell 

lines (n=5) were treated as in (E), TMRM ratio of rotenone/DMSO of MM cells grown 

with and without BMSC is presented. (G) and (H) Mitochondrial transfer levels were 

assessed, using MitoTracker Green, to primary MM cells (n=7) (G) or MM cell lines 

(n=4) (H) upon the addition of 10 nM Bortezomib. (I) Rho0 BMSC were generated 

from the BMSC cell line HS-5. MM primary cells were then grown on control BMSC 

or rho0 BMSC for 48 48 hours, MM cells were then analysed by Seahorse for 

oxygen consumption rate at basal and maximal conditions. 

 

Figure 3. Mitochondrial transfer in MM is via TNTs. MM cell lines and BMSC were 

pre-stained with 200 nM MitoTracker green for 1 hour and then cultured together 

before 24-hour drug treatment, with 350 M Cytochalasin B (A) and 50 M 

Dansylcadavarine (B). Flow cytometry was used to detect MitoTracker green FM in 

the MM cells.  (C) MM1S cells were stained with vybrant Dil for 1 h and washed 3 

times in PBS. BMSC were stained with MitoTracker green FM for 1 h and washed 3 

times in PBS. MM cells and BMSC were then co-cultured for 24 hours before fixation 

using paraformaldehyde. Cells were visualised by confocal microscopy. (D-E) MM1S 

cells lentivirally transduced with the rLV.EF1.AcGFP-Mem9 virus were cultured with 

BMSC stained with MitoTracker CMXRos for 24 hours before fixation with 

paraformaldehyde. Confocal microscopy imaging highlighted TNTs formed between 

the MM and BMSC. (F) U266 MM cells and BMSC were prepared and cultured as in 

(C). U266 MM cells were washed off prior to fixation. TAPs on BMSC were 

visualised by confocal microscopy and quantified on each confocal image obtained 

(n=5). (G) This was carried out also for MM cell lines MM1s, RPMI and H929. 

 

Figure 4. CD38 inhibition prevents mitochondrial transfer and TNT formation. 

(A) Mitochondrial levels in primary MM cells (n=7) and MM cell lines (n=5) were 
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correlated to CD38 expression on these cells. Mitochondrial levels were achieved 

using the MitoTracker based assay, whilst CD38 expression was determined using 

flow cytometry. (B) Primary MM cells (n=8) and BMSC were pre-stained with 200 nM 

MitoTracker green for 1 hour and then cultured together before 24-hour treatment 

with a CD38 blocking antibody. Flow cytometry was used to detect MitoTracker 

green FM in the MM cells. (C) Four MM cell lines were transduced with a lentivirus 

targeted to CD38 or control for 72 hours. CD38 protein expression levels were 

analysed by flow cytometry.  (D) The four MM cell lines transduced with a lentivirus 

targeted to CD38 or control were pre-stained, along with BMSC, with MitoTracker 

green for 1 hour and then cultured together for a further 24 hours before MitoTracker 

was assayed by flow cytometry. (E and F) Control KD and CD38 KD MM1S and 

U266 cells were co-cultured with BMSC for 24 hours. Cell viability and levels of 

apoptosis were assessed using CellTitre-Glo and Annexin V staining respectively. (G 

and H) U266, RPMI and H929 cells were treated with 1µM ATRA or DMSO 

overnight. CD38 expression was analysed in MM cells at RNA (G) and protein (H) 

levels, using qPCR and flow cytometry respectively. (I) Mitochondrial transfer levels 

from BMSC to MM cells was analysed using the MitoTracker green mitochondrial 

transfer assay, after treatment of MM cells with ATRA. 

 

Figure 5. Tumor cell CD38 supports the formation of TNTs. (A) MM1S, U266, 

RPMI and H929 MM cell lines, transduced with a lentivirus targeted to CD38 or 

control, were stained with Vybrant Dil for 1 h and washed 3 times in PBS. BMSC 

were stained with MitoTracker green FM for 1 h and washed 3 times in PBS. MM 

cells and BMSC were then co-cultured for 24 hours, MM cell lines removed before 

fixation using paraformaldehyde. TAPs were visualised on BMSC by confocal 

microscopy. (B) TAPs formed by control KD and CD38 KD cells were quantified on 

BMSC using confocal images obtained (n=5).  (C and D) MM1S and U266 MM cell 

lines were co-cultured with BMSC for 24 hours. Cells were removed and analysed 

for CD38 expression by flow cytometry. (E) The location of CD38 on BMSC, after 

TAP formation by MM1S cells, was determined by staining with a CD38 antibody 

(Alexa Fluor 647). TAPs and CD38 expression were visualised on BMSC by confocal 

microscopy. 
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Figure 6. Targeting CD38 in-vivo blocks mitochondrial transfer and improves 

animal survival. (A) Mice were imaged using bioluminescence weekly to monitor 

engraftment and disease progression in the animals injected with control and CD38 

KD MM1S-luc cells. (B) The survival of NSG mice injected with either control KD or 

CD38 KD MM1S-luc cells. (C) Control KD and CD38 KD MM1S-luc cells were plated 

at a concentration of 100x103 cells/ml. The growth capacity of both cell types was 

monitored over a 72hr period using trypan blue exclusion. (D) Mitochondrial levels 

were analysed in the purified control KD and CD38 KD MM cells, after isolation from 

recipient animals, by staining for 15 minutes in 200 mM MitoTracker Green and flow 

cytometry. (E) Mitochondrial levels in control KD and CD38 KD MM cells cultured in-

vitro were analysed MitoTracker fluorescence. (F) CD38 KD and control KD MM1S 

cells were grown in-vitro with and without BMSC for 72 hr, prior to analysis by the 

Seahorse extracellular flux analyser with Mito Stress kit. (G) Oxygen consumption 

rate (OCR) of CD38 KD and control KD MM1S cultured with BMSC. Data 

represented as mean +/- standard deviation. (F) Basal mitochondrial respiration of 

CD38 KD and control KD MM1S cells grown with and without BMSC. 
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