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Key points 

• Leukemia blasts derived superoxide induces a senescent phenotype in cells within 

the bone marrow microenvironment 

• Targeting the senescent bone marrow cells improves the survival of mice with 

leukemia. 

 

Abstract 

Acute myeloid leukemia (AML) is an age-related disease that is highly dependent on the 

bone marrow microenvironment.  With increasing age, tissues accumulate senescent cells, 

characterized by an irreversible arrest of cell proliferation and the secretion of a set of pro-

inflammatory cytokines, chemokines and growth factors, collectively known as the 

senescence-associated secretory phenotype (SASP).  Here, we report that AML blasts 

induce a senescent phenotype in the stromal cells within the bone marrow 

microenvironment. We report that the bone marrow stromal cell senescence is driven by 

p16INK4a expression. The p16INK4a-expressing senescent stromal cells then feedback to 

promote AML blast survival and proliferation via the SASP.  Importantly, selective elimination 

of p16INK4a-positive senescent bone marrow stromal cells in vivo improved the survival of 

mice with leukemia.  Next, we find that the leukemia-driven senescent tumor 

microenvironment is caused by AML induced NOX2-derived superoxide.  Finally, using the 

p16-3MR mouse model we show that by targeting NOX2 we reduced bone marrow stromal 

cell senescence and consequently reduced AML proliferation. Together, these data identify 

leukemia generated NOX2 derived superoxide as a driver of pro-tumoral p16INK4a-

dependent senescence in bone marrow stromal cells. Our findings reveal the importance of 

a senescent microenvironment for the pathophysiology of leukemia. These data now open 

the door to investigate drugs which specifically target the ‘benign’ senescent cells that 

surround and support AML.     
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 Acute myeloid leukemia (AML) is an age-related, often lethal disease that is highly 

dependent on the bone marrow (BM) microenvironment 1.  Despite remission often seen 

after chemotherapy, long-term survival is modest.  Thus, improved outcomes may depend 

on novel treatment strategies derived from a better understanding of the role of the BM in 

AML progression and relapse.   

 

 The BM is a structurally complex organ comprised of blood vessels and a 

heterogeneous population of cells that either directly participate in the generation of blood 

cells, or support the hematopoietic function of the tissue 2.  Support cells in the BM all 

contribute to stimuli required for regulating normal hematopoiesis.  In leukemia, however, the 

BM fails to produce adequate numbers of mature blood cells and platelets 2.  Notably, AML 

blasts have been show to alter the function of BM stromal cells (BMSC: including endothelial 

cells, fibroblasts and adipocytes) 1,3-5.  This blast cell non-autonomous activity ultimately 

reshapes the BM microenvironment, thereby promoting AML tumor cell survival and 

proliferation.   

 

 Cellular senescence was described over 5 decades ago by Hayflick and colleagues 6 

as an irreversible arrest of normal cell proliferation.  It is now clear that the senescence 

growth arrest evolved, at least in part, to suppress the development of cancer 7.  In addition 

to arrested growth, senescent cells show widespread changes in chromatin organization and 

gene expression 8.  These changes include the secretion of numerous pro-inflammatory 

cytokines, chemokines, growth factors and proteases, a feature termed the senescence-

associated secretory phenotype (SASP) 9.  The senescence response, therefore, likely 

evolved not only to suppress the development of cancer, but also to aid tissue repair and 

regeneration in response to injury.  However, because senescent cells gradually increase 

with age, the senescence response likely becomes maladaptive with age, and there is 

mounting evidence that they contribute to a variety of age-related phenotypes and 

pathologies 7,10.  Furthermore, the SASP can disrupt a number of cellular and tissue 

functions, including, ironically, distinct pathologic pro-tumoral changes 7,11.  

 

 AML is primarily a disease of the elderly, with peak incidence between the ages of 80 

and 85 years 12.  Because AML is an age-related disease and highly dependent on the BM 

microenvironment, which naturally becomes senescent with age, we hypothesized, and 

subsequently tested the idea, that AML not only favors a senescent microenvironment but 

might actively shape a senescent micro-environment to promote tumor proliferation and 

survival.   
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Materials and Methods 

Materials 

Anti-p16 antibody was from BD Biosciences (Oxford, UK).  Anti-humanCD45-BV421, anti-

mouse CD45-human-BV421, anti-mouse CD31-PerCP, anti-mouse Ter119-APC, CD33-

APC, anti-mouse CD45-PerCP anti-mouse CD140a APC-Cy7 and anti-mouse CD105-FITC 

were from Miltenyi Biotec (Bergisch Gladbach, Germany) and Biolegend (London, UK).  All 

other reagents were obtained from Sigma-Aldrich (St Louis, MO, USA), unless otherwise 

indicated.   

 

Methods 

Cell cultures 

Primary AML blasts and BMSCs were obtained from patient BMs (supplementary table 1).  

Non-senescent BMSCs were collected from the BM beneath the exposed acetabular surface 

of the pelvis during surgery of patients undergoing elective hip replacement. CD34+ cells 

were enriched from whole cord blood using CD34+ Magnetic Bead separation (Miltenyi 

Biotec). All tissue was taken following informed consent and under approval from the UK 

National Health Service Health Research Authority (LRECref07/H0310/146).  For primary 

cell isolation, heparinized blood was isolated by density centrifugation using Histopaque as 

previously described 13.  Primary cells and cell lines were cultured in growth medium 

comprising DMEM, 10% FBS and 1% L-glutamine at 5% CO2 at 37° C.  BMSCs were 

isolated from hip replacement patients and AML bone marrow samples by adherence to 

tissue culture plastic and then expanded in DMEM containing 20% FBS plus 1% penicillin-

streptomycin.  BMSC markers were confirmed by flow cytometry for expression of CD90+, 

CD73+, CD105+ and CD45-.  

 

Co-culture experiments  

BMSC were seeded at 1x104 cells per well of a 4 well plate in normal growth media. 

BMSC were then transduced with either lentivirus containing control shRNA (sHE) or 

test shRNA (p16 or p21) for 5 days. AML blasts (0.25x106) or normal CD34+ cells 

(0.25x106) were then co-cultured with the BMSC. Cells counts were based on 

hemocytometer counting and we used flow cytometry as a second test to confirm the 

cells were either AML (CD45+/CD33+) or CD34 (CD34+) of origin.  

 

Senescence β-galactosidase assay 
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Senescence β-galactosidase staining kit (Cell Signaling Technology (CST), Massachusetts, 

USA) was used to detect SA-Bgal in BSMCs.  BMSCs were cultured and treated in 35 mm 

dishes.  The BMSCs were evaluated for the blue colour, indicative of SA-βgal positive cells. 

 

Flow cytometry analysis and cell sorting 

Cells were collected by centrifugation for 3 min at 400g washed and resuspended in 

phosphate-buffered saline (PBS), incubated for 5 min with the Fc receptor (FcR) blocking 

reagent, then stained with anti-human CD45-FITC, anti-mouse CD45-PerCP and anti-mouse 

CD105-APC antibodies or isotype controls.  Analysis were performed on a CytoFLEX and 

using CytExpert analysis software (Bechman Coulter). Cell sorting was performed on a BD 

FACSMelody (BD Bioscience) and a BD Aria II cell sorter (BD Bioscience). 

 

RNA extraction and real-time PCR 

Total RNA was extracted from cells using the ReliaPrep RNA extraction kit from Promega 

(Southampton, UK) according to the manufacturer’s instructions.  Reverse transcription was 

performed using the qPCRBIO cDNA synthesis kit (PCR Biosystems, London, UK).  Relative 

quantitative real-time PCR using qPCRBIO SyGreen Mix (PCR Biosystems, London, UK) 

was performed on cDNA generated from purified RNA.  After pre-amplification (95°C for 2 

min), the PCRs were amplified for 45 cycles (95°C for 15 sec, 60°C for 10 sec and 72°C for 

10 sec) on a 384-well LightCycler 480 (Roche, Burgess Hill, UK).  Each mRNA level was 

normalized against the beta-actin mRNA level. 

 

Western immunoblotting and ELISAs 

Western analyses following SDS-PAGE were carried out as described 14.  Briefly, whole cell 

lysates were extracted and SDS-PAGE gel electrophoresis separation performed.  Western 

analysis performed using anti-p16INKa antibody; membranes were re-probed for beta-actin 

as a loading control.  

 

shRNA silencing of p16, p21 and NOX2 

Mission shRNA targeted lentivirus plasmids were purchased from Sigma-Aldrich.  Control 

and targeted lentivirus stocks were produced as described 15, concentrated using Amicon® 

Ultra centrifugal filters and titers determined using the Lenti-X™ qRT-PCR titration kit 

(CloneTech, Saint-Germain-en-Laye, France).  BMSCs were infected with p16INK4a or p21 

targeted virus.  Knockdown was confirmed 5 days later and BMSCs were then combined 

with AML cells at a ratio of 1:5. MN1 cells were infected with NOX2 targeted virus. shRNA 

transduced cells were not sorted or enriched before use in experiments. 
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Retroviral AML transplantation mouse model 

All animal experiments were performed in accordance with UK Home Office approvals and 

regulations and with approval from the Animal Welfare and Ethical Review Board of the 

University of East Anglia.  C57BL/6J mice were obtained from Charles River (UK).  In this 

study we also used p16-3MR mice developed by the Campisi lab 16, which carry a transgene 

comprised of the p16INK4a regulatory elements driving expression of a fusion protein 

containing Renilla luciferase (to visualize p16INK4a expressing cells), monomeric red 

fluorescent protein (RFP; to visualize and isolate p16INK4a expressing cells) and the herpes 

simplex virus thymidine kinase (to selectively kill such cells by administering the pro-drug 

ganciclovir) 16 

 

Bone marrow was harvested from mice, and lineage-negative cells were obtained by 

negative selection using the Lineage Cell Depletion Kit (Miltenyi Biotec).  Lineage-negative 

cells from C57BL/6J were retrovirally infected as previously described1.  To generate MN1 

and HoxA9/Meis1cells bone marrow cells were harvested from mice, and lineage-negative 

cells were obtained by negative selection using the Lineage Cell Depletion Kit (mouse) as 

recommended by the manufacturer (Miltenyi Biotec). Lineage-negative cells derived from 

C57BL/6J were retrovirally infected by co-culture with GP+E86 cells (ATCC) transfected with 

pSF91MN1iGFP, or MIG-HA-HoxA9 or MIY-HA-Meis1a (kindly provided by Professor Keith 

Humphries, Terry Fox Laboratory, Vancouver, Canada) in the presence of polybrene (10 

µg/ml, Sigma-Aldrich) 17. Co-culture with GP+E86 packaging pSF91MN1iGFP, MIG-HA-

HoxA9 was performed for 3 days. MIH-HA-HoxA9 (GFP) transfected cells were then 

cocultured GP+E86 packaging MIY-HA-Meis1a (YFP) to generate HoxA9/Meis1 and MN1 

overexpressing lineage negative cells.  Cells were sorted using a FACS BD Aria II cell 

sorter. Cells were maintained in DMEM, 20% FCS supplemented with murine IL-3 (10ng/ml), 

murine IL-6 (10ng/ml) and murine SCF (100ng/ml) all purchased from PeproTech (London, 

UK). MN1 cells were then infected with pCDH-luciferase-T2A-mCherry, kindly provided by 

Prof. Irmela Jeremias, (Helmholtz Zentrum München, Munich, Germany) 18.  MN1 cells were 

plated at 5x104/well in 12-well plates and expanded.  MN1 cells expressing mCherry (MN1-

luc) were sorted on a FACSAria II cell sorter.   

 

For AML induced senescence, 8-12 week old p16-3MR were injected with 1x105 MN1-luc 

expressing cells.  To detemine engraftmenet of MN1-luc cells into p16-3MR and C57BL/6 

animals, mice were i.p. injected with luciferin (Fisher Scientific) and imaged for firefly 

luminescence (MN1-luc) using the In-vivo Bruker Xtreme (Coventry, UK).  For survival 

experiments, MN1 engrafted p16-3MR mice were split into two groups before treatment with 
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GCV.  Mice were then i.p. injected with GCV (25mg/kg) or PBS (control) for 5 consecutive 

days. 

 

Primary AML and CD34+ hematopoietic progenitor cell xenograft model 

NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice were obtained from The Jackson 

Laboratory (Bar Harbor, ME, USA).  NSG mice were maintained under specific pathogen-

free conditions.  For the AML xenograft model, 2x106 viable primary AML cells were washed 

and resuspended in PBS.  Cells were then injected into the tail vein of non-irradiated 6-8 

week old female NSG mice.  When clinical signs of illness were apparent (rough fur, 

hunchback, or reduced motility) or if 12 weeks post injection was reached, mice were 

sacrificed by exposure to CO2.  For the CD34+  hematopoietic progenitor cell (HPC) 

xenograft model (hu-NSG) 2x105 CD34+ cord blood cells were injected into the tail vein of 

non-irradiated 3-4 week old female NSG.  CD34+ cell engraftment was monitored peripheral 

blood analysis for human CD45 cells. 12 weeks post injection mice were sacrificed by 

exposure to CO2.  BM was harvested and cell sorting was performed for human CD45- and 

mouse CD45-, Ter119-, CD31-, CD105+, CD140a+. BM was also analysed for human cell 

engraftment by human CD45+ cells.  If more than 1% of human CD45 cells were detected in 

the BM, the AML sample was determined to be engrafted.  

 

Statistical analyses 

The Mann-Whitney U test was used to compare test groups where stated.  p<0.05 was 

considered statistically significant and denoted by *.  Results were the mean ± standard 

deviation of four or more independent experiments.  We generated statistics using Graphpad 

Prism5 software (Graphpad, San Diego, CA, USA).  For Western analyses, data are 

representative images of three independent experiments. 
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Results 

AML induces a senescent phenotype in vivo. 

 We showed that primary human AML cells induce a SASP (upregulation of IL-6, IL-8, 

MIP1a and MIP3a) when co-cultured with primary BMSCs 4.  Here, we determined whether 

AML cells can induce a SASP in vivo.  We engrafted 4 primary AML patient-derived cells 

(AML-NSG) and normal human cord blood derived CD34+ HPC (hu-NSG) into 

immunocompromised NSG mice by tail vein injection (schematic, Figure 1A).  Ten-12 weeks 

after injection, we sacrificed the animals; we determined engraftment (Figure 1B), sorting 

CD45 negative (mouse and human), CD31 negative, Ter119 negative, CD140a positive and 

CD105 positive BMSCs (Figure 1C).  The frequency of BMSCs in hu-NSG compared to 

AML-NSG is shown in supplementary figure 1. Mouse BMSCs (mBMSCs) from hu-NSG 

served as a negative control.  Sorted BMSC from hu-NSG and AML-NSG were analyzed for 

gene expression by real-time PCR. Our analyses showed that the expression of p16INK4a, 

and to a lesser extent p21, was consistently up-regulated in mBMSCs from AML cell 

engrafted mice (Figure 1D).  Further, the SASP components IL-6 and MIP3, although not 

MIP1a, were also consistently up-regulated in mBMSCs from animals engrafted with 

leukemic cells compared to animals engrafted with human CD34+ HPC (Figure 1E).  Loss of 

lamin B1 is another identifier of senescent cells 19.  Consistent with the expression of 

p16INK4a, IL-6 and MIP1a, lamin B expression declined in BMSCs from AML engrafted 

NSG mice (Figure 1F).  Plasma concentrations of mouse IL-6 are also elevated in AML-NSG 

mice compared to hu-NSG mice (Figure 1G). Mouse MIP3 concentrations were undetected 

in both treatment groups. Together, these data suggest that AML cells can induce a 

senescent phenotype in the BM microenvironment.   

 

BMSC senescence is driven by p16INK4a-expressing cells and is pro-tumoral 

 To determine the drivers of AML-induced senescence in human BMSCs, we cultured 

primary AML cells or normal CD34+ HPC with human primary non-senescent BMSCs for 6 

days.  Human BMSCs were then assayed for senescence-associated β-Galactosidase (SA-

Bgal), IL-6 and lamin B1.  Human BMSCs co-cultured with AML cells showed increased SA-

Bgal staining (Figure 2A, B), increased IL-6 and IL-8 expression (Figure 2C) and reduced 

lamin B1 expression (not shown) compared to BMSCs co-cultured with normal CD34+ HPC, 

consistent with AML-induced cellular senescence.  Co-culture with AML cells also induced 

p16INK4a and p21 expression in BMSCs (Figure 2D).  Subsequently, we examined the 

impact of p16INK4a or p21 knockdown (Supplementary Figure 2A, B and C) in human 

BMSCs on AML cell or normal CD34+ HPC survival.  AML cells showed reduced growth, as 

determined by cell number, when co-cultured on p16 knockdown BMSCs (Figure 2E and 

supplementary figure 2C).  In addition, knockdown of p16INK4a in BMSC prevented 
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senescence when cultured with AML (Figure 2F). We conclude that p16 driven senescence 

in human BMSCs is pro-tumoral. 

 

Deleting BM senescent cells reduces tumor growth 

 A number of murine models have been developed to study p16INK4a driven 

senescence in vivo 16,20,21.  We used p16-3MR mice, which carry a transgene comprised of 

the p16INK4a regulatory elements driving expression of a fusion protein containing Renilla 

luciferase (to visualize p16INK4a expressing cells), monomeric red fluorescent protein (RFP; 

to isolate such cells) and the herpes simplex virus thymidine kinase (to selectively kill such 

cells by administering the pro-drug ganciclovir) (Figure 3A) 16.   

 To determine whether AML induces senescence in p16-3MR mice, we isolated 

BMSCs from these mice and co-cultured them with MN1 cells, (mouse myeloid leukemic 

cells), HoxA9/Meis1 (mouse myeloid leukemic cells) or lineage negative cells (lin-) for 6 

days, as this incubation time has been shown to increase RFP in cells from the p16-3MR 

model under injury16.  After 6 days of co-culture, p16-3MR BMSCs cultured with MN1 or 

HoxA9/Meis1 cells but not lineage negative cells had detectable red fluorescence (Figure 

3B-C), consistent with p16INK4a-driven senescence.  To confirm senescence in the p16-

3MR BMSCs, we examined p16INK4a protein levels and showed that under co-culture 

conditions p16-3MR BMSCs had elevated levels of p16INK4a protein, and this increase did 

not depend on direct cell-cell contact (Figure 3D).  Moreover, conditioned media from MN1 

also increased p16INK4a protein expression in BMSC, whereas co-culture of BMSCs with 

lineage negative cells had no effect on p16INK4a protein expression (Figure 3E). This 

finding suggests that the AML signal which drives BMSCs into senescence is soluble.   

 To determine whether AML engraftment induces senescence in the p16-3MR BM in 

vivo, first we transfected MN1 cells with firefly luciferase (MN1-luc) to detect their presence 

after engraftment into p16-3MR mice (Supplementary figure 3).  Next, firefly luciferase 

activity confirmed engraftment of MN1 into p16-3MR mice.  Finally, we examined BMSCs 

from the BM of p16-3MR animals engrafted with MN1 for RFP (Figure 3F, G).  MN1 cells 

induced RFP expression in p16-3MR mice compared to control animals, consistent with the 

AML cells inducing a senescence response.   

 Next, we created senescent p16-3MR BMSCs by culturing them with MN1 cells in 

transwells for 6 days.  We then treated the co-cultures with gancyclovir (GCV) (Figure 4A).  

MN1 cells showed reduced cell number when cultured on senescent BMSCs treated with 

GCV compared to BMSCs treated with PBS.  To test the hypothesis that senescent BMSCs 

fuel tumorigenesis in vivo, we injected MN1 cells into p16-3MR mice, followed by GCV 

treatment (Figure 4B).  p16-3MR mice engrafted with MN1-luc cells for 14 days, then treated 

with GCV (once daily for 5 days), showed reduced tumor load compared to PBS treated p16-
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3MR mice engrafted with MN1-luc cells (Figures 4C,D).  Tumor load was detected by firefly 

luciferase expressed from MN1-luc cells which is activated by the substrate luciferin, and not 

coelenterazine which activates luciferase derived from Renilla (supplementary figure 3). 

Moreover, MN1-luc engrafted p16-3MR mice survived longer following five days of GCV 

treatment compared to control treated animals (Figure 4E).  Finally, to confirm that this 

survival was due to the GCV effect of the p16-3MR transgene and not a direct effect of GCV, 

we engrafted MN1-luc cells into non-transgenic C57BL/6 animals (Figure 4F).  GCV had no 

effect on C57BL/6 mice engrafted with MN1-luc cells.  Furthermore, GCV reduced RFP 

expressing BSMC cells in-vivo in p16-3MR mice engrafted with MN1 cells and reduced b-gal 

staining in BMSC cultured with MN1 cells in vitro (supplementary figure 4A and B). We 

conclude that deletion of senescent non-malignant BMSCs is anti-leukemic. 

 

NOX2 derived superoxide drives AML associated BM senescence  

 By what mechanism do AML cells induce senescence in BMSCs?  One established 

inducer of senescence is oxidative stress 22,23, and we showed that human AML cells induce 

oxidative stress in BMSCs 24.  Indeed, MN1 and HoxA9/Meis1 cells, but not lineage negative 

cells, increased oxidative stress as measured by increased DCF (dihydrodichlorofluorescein 

diacetate, detect cellular ROS level) fluorescence in BMSCs from p16-3MR mice (Figure 

5A). Supplementary figure 5 shows that human primary AML, but not normal CD34+ HPC, 

can induce ROS in BMSC.  AML blasts were reported to generate more superoxide than 

nonmalignant CD34+ cells 25.  This ROS was a consequence of superoxide generated by 

NOX2, which was shown to benefit malignant cells 24,25.  Moreover, ROS in the form of H2O2 

can induce senescence in several cell types 22,23.  Therefore, we determined whether H2O2 

induced senescence in BMSCs in culture.  Indeed, treating human BMSCs with H2O2 

induced a senescent phenotype (Figure 5B, C).  Importantly, after MN1 cells were injected 

into allogeneic mice, hydrogen peroxide levels as measured by the Amplex Red Assay were 

elevated in the whole BM, a phenomenon that did not occur in control mice (Figure 5D).  

Moreover, ROS levels, analysed by flow cytometry, in BMSCs also increased in MN1 

engrafted mice (Figure 5E).   

 Finally, we asked whether AML derived NOX2 dependent superoxide is responsible 

for inducing p16INK4a-driven senescence in p16-3MR mice.  We depleted NOX2 from MN1 

cells (Figure 5F).  Strikingly, we found increased survival of p16-3MR mice engrafted with 

MN1 cells with NOX2 knockdown compared to control knockdown animals (Figure 5G).  

Moreover, BMSC cultured with NOX-KD cells had reduced levels of ROS compared to 

control-KD MN1 cells (supplementary 6A).  Knockdown of NOX2 in MN1 cells engrafted into 

p16-3MR mice also resulted in significantly fewer senescent BMSCs (Figure 5H and 

supplementary figure 6B). Moreover, when we treat NOX2-KD MN1 engrafted p16-3MR 
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mice with GCV no additive affect is observed (Figure 5I). Together, these data identify AML 

generated NOX2 derived superoxide as a driver of p16INK4a-dependent senescence. 
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Discussion 

 Here we report that AML cells induce a SASP in the BM microenvironment, which 

supports the survival and proliferation of the leukemic blasts.  In vivo, AML cells induce 

senescence in BMSC.  Deletion of these senescent p16INK4a-expressing BMSCs slows 

tumor progression and extends animal survival.  Notably, the senescence response and 

SASP is driven by superoxide generated locally by the tumor.  

 

 AML is primarily a disease of the elderly.  The Swedish Adult Acute Leukemia 

Registry reported that the highest incidence of AML occurred between the ages 80 to 85 

years, with a median age at diagnosis of 72 years 12.  Outcomes for older patients with AML 

are poor.  However, this poor prognosis is not sufficiently explained by more frequent 

adverse prognostic factors or genetic complexities of the tumor 12.  In a comparison between 

younger and older patients enrolled in the UK MRC AML 10 (age < 55 years at diagnosis) 26 

and AML 11 (aged 60+ years) 27 clinical trials, Grimwade and colleagues found that the 

poorer survival of older patients with favorable cytogenetic abnormalities, compared with 

younger individuals with similar genetic lesions, could not be accounted for by the frequency, 

nature or number of secondary aberrations.  Rather, the deleterious effect of advancing age 

at time of diagnosis remained a highly significant prognostic factor even after hierarchical 

cytogenetic risk group was taken into account 28.  The causes for the poorer prognosis of 

older patients compared with younger patients with similar leukemia cell biologic features are 

likely many but are not yet completely explained.  These observations however are 

consistent with the hypothesis that biological differences in the older versus younger tumor 

host environment contribute to poorer outcomes in older patients.  Our findings show that 

AML induces senescence in the BM microenvironment of the host and that this in turn was 

pro-tumoral.  We therefore hypothesize that a senescent microenvironment (which also 

occurs with aging) may contribute to these clinical observations. 

 

 We observed that both p16INK4a and p21 are up-regulated in BMSCs from mice 

engrafted with human AML cells.  Other studies showed that mice with single p16INK4a or 

p21 knockout are still capable of senescence because of compensatory actions of p16INK4a 

and p21.  However, cells from double knockout mice show little or no senescence 16,29.  

Using the p16-3MR mouse model to generate an in vivo model of the mouse AML 

microenvironment, we show that induction of p16INK4a expression in BMSCs was sufficient 

to generate senescence and promote progression AML tumor progression.  Knockdown of 

p21 had no significant effect on AML tumor volume in our studies.  
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 Other in vivo models of p16INK4a senescence 20,21 showed that expression of 

p16INK4a with age does not necessarily predict overall cancer development, suggesting that 

the accumulation of senescent cells is not a principal determinant of cancer-related death.  

In these studies, p16INK4a activation was observed in emerging neoplasms, as well as 

surrounding stromal cells in 5/5 solid tumor models studied.  Such data suggests that, while 

maybe not sufficient to cause malignancy, p16INK4a activation is a characteristic of 

emerging cancer.  Conversely, others have shown that the elimination of senescent cells 

during aging in mice produces smaller and presumably less aggressive tumors 30, and that 

cancer associated fibroblasts from breast tumors have a proliferative phenotype and 

associated low p16INK4a expression compared to non-cancer associated fibroblasts 31.  

Thus, the presence of senescent stromal cells may be tumor specific.  Here we add AML to 

the list of diseases in which p16INK4a activation in cancer associated stromal cells is pro-

tumoral.  

 

 Using p16-3MR mice, we show that AML induces a senescent BM phenotype 

through superoxide derived from the tumor.  ROS are known to induce senescence in both 

benign and malignant tissue 9,11,22.  Moreover, most cancers have been shown to produce 

ROS 32.  We and others showed that NOX2-derived superoxide drives part of the malignant 

phenotype of AML 24,25.  Because the known stimuli of cellular senescence include DNA 

damage and ROS 33,34, we investigated whether the SASP in the BM microenvironment, 

occurring in response to AML, was a consequence of AML induced superoxide.  We found 

that ROS drives BM cellular senescence through BMSC p16INK4a expression.  

Furthermore, using p16-3MR mice, we showed that targeting NOX2 impaired BMSC 

senescence and leukemic proliferation.   

 

 Cellular senescence is emerging as a fundamental and complex component of both 

health and disease 35.  Senescence is a response to cellular damage, which results in 

irreversible cell cycle arrest and subsequent secretion of cytokines, chemokines and other 

factors known as the SASP 11,36.  The beneficial functions of senescence include the 

promotion of tissue repair, wound healing and tumor suppression 16,37,38.  In addition, 

senescent cells naturally accumulate with age and contribute to the pathophysiology of a 

spectrum of age related disorders including cancers, atherosclerosis and osteoarthritis 36.  In 

an apparent paradox, it is increasingly recognized that cellular senescence underpins a 

number of both degenerative and hyperplastic diseases of aging 7.  Therapeutically, 

clearance of senescent cells from the microenvironment has been reported to attenuate the 

effects of age related degenerative illness and result in a regenerative program of healing in 

a model of osteoarthritis 39.  Such data promote the hypothesis that drug targeting of 
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senescent cells might improve current treatments (and outcomes) more broadly for patients 

with degenerative disorders.  Similarly, the data presented here, and by others40, linking 

senescent cells in the leukemia microenvironment to the malignant phenotype of AML, 

suggests that chemotherapeutic strategies, which include targeting of senescent cells in the 

microenvironment, may benefit patients with leukemia through either direct effects on tumor 

development and/or by enhancing responses to tumor directed chemotherapy drugs.  

 

 P16INK4a regulates the cell cycle by slowing progression from G1 to S phase.  In 

one enforced expression model of p16INK4a, several components of the SASP were 

independent of p16INK4a expression, so several aspects of the SASP are considered a 

damage response that is separable from the growth arrest 41.  Nevertheless, both the SASP 

and growth arrest occurred as a consequence of ROS mediated p16INK4a activation 41.  

Here we show that p16INK4a driven BMSC senescence is a consequence of increased ROS 

generated by malignant cells.  Whether the SASP component of senescence is directly down 

stream of p16INK4a or mediated through alternate pathways in response to ROS is not 

clear.  It is, however, the case that deletion of p16INK4a expressing senescent cells in the 

tumor microenvironment directly inhibits AML growth and improves animal survival. 

 

 In summary, our results describe the pro-tumoral pathophysiologic consequences of 

leukemia-induced cellular senescence in the BM microenvironment and the mechanism by 

which this occurs.  Our data open the door to future studies investigating the utility of 

compounds, not targeting the malignant cell, but targeting the ‘benign’ senescent cells that 

surround and support the tumor.     
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Figure legends:  

 

Figure 1. Primary human AML induces a p16 driven SASP in vivo. (A) Schematic of in 

vivo experiment in which 2x106 primary AML cells (4 individual patient AML and 5 CD34 

HPC) were injected into NSG mice. (B) Engraftment was measured by detecting human 

CD45 by flow cytometry. In the dot plot each AML engraftment into NSG mice is shown for 

bone marrow. (C) Representative gating strategy for BMSC cell (hCD45-, mCD45-, mCD31-, 

mTer119-, mCD105+, mCD140a+) population which was sorted. (D) RNA analysis for p16 

and p21 in the sorted BMSC (hCD45-, mCD45-, mCD31-, mTer119-,  mCD105+, 

mCD140a+) isolated from NSG mice engrafted with primary human AML or cord blood 

CD34+ HPC (E) RNA analysis for SASP in the sorted BMSC. (F) RNA analysis for lamin B in 

the sorted BMSC. (G) Terminal peripheral blood samples were taken and plasma isolated 

from all NSG mice engrafted with primary human AML or cord blood CD34+ HPC and 

mouse IL-6 was measured by ELISA. The Mann-Whitney U test was used to compare 

between treatment groups (* = p<0.05). 

 

Figure 2. AML induced senescence in BMSC.  (A) BMSC were cultured alone or with 

primary AML(0.25x106 n=12) or with CD34+ HPC (0.25x106 n=7) for 6 days. Non-adherent 

cells were removed and BMSC were analysed for senescence associated B-Galactosidase 

staining (SA-β-gal). (B) Bar graph representation of SA-β-gal positive cells from Figure 2A. 

(C) BMSC were cultured alone or with primary AML(0.25x106 n=10) or with CD34+ HPC 

(0.25x106 n=5) for 6 days. Non-adherent cells were removed and RNA was extracted from 

the BMSC. RNA was analysed for IL-6 and IL-8 expression using qRT-PCR. (D) As for (C) 

but analyzed for p16 and p21. (E) BMSC were infected with p16 targeted shRNA or control 

shRNA lentivirus and cultured for 5 days. AML blasts (0.25x106 n=10) or CD34+ HPC 

(0.25x106 n=5) were co-cultured with BMSC with control shRNA or on BMSC with p16 

shRNA.  AML blast number was assessed using a trypan blue exclusion hemocytometer-

based counts and CD33/CD45+ staining using flow cytometry. (F) To confirm the senescent 

profile of BMSC from (E) non-adherent cells were removed and BMSC were analysed for 

senescence associated B-Galactosidase staining (SA-β-gal) (n=5). The Mann-Whitney U 

test was used to compare between treatment groups (* = p<0.05). Each dot on the dot plots 

represents a different AML or CD34 HPC sample. 

 

Figure 3. MN1 engraftment drives p16-3MR. (A) Schematic of p16-3MR model. (B)  

Fluorescent images of p16-3MR isolated BMSC which have been cultured alone or with 

lineage negative cells (lin-), MN1 cells or HoxA9/Meis1 cells for 6 days. (n=3) (C) Flow 

cytometry analysis of p16-3MR BMSC which have been cultured alone or with lineage 
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negative cells (lin-), MN1 cells or HoxA9/Meis1 cells for 6 days. (n=3) (D) Western blot 

analysis of p16-3MR BMSC cultured alone or with MN1 for 6 days (DC = direct contact or 

TW - transwell). Blots were reprobed with B-actin to confirm sample loading (shown are 

representative images of 3 blots). (E) Western blot analysis of p16-3MR BMSC cultured 

alone or with lineage negative cells (lin-), conditioned media (CM) from MN1 cells or MN1 

cells. Blots were reprobed with B-actin to confirm sample loading (shown are representative 

images of 3 blots) (F) 1x105 MN1 cells were injected into the tail vein of p16-3MR mice. BM 

was isolated and analysed for mouse BMSC (mCD45-, mCD31-, mTer119-, mCD105+, 

mCD140a+) expressing red fluorescent protein (RFP) using flow cytometry (n=5). (G) Flow 

cytometry analysis of p16-3MR BMSC measuring RFP (F). The Mann-Whitney U test was 

used to compare between treatment groups (* = p<0.05). 

 

Figure 4. Deleting senescent cells reduces AML tumor volume.  (A) MN1 were grown on 

p16-3MR non-senescent or senescent BMSC for 2 days with and without treatment with 

GCV (10µg/ml) (n=3). (B) schematic of GCV experiment in vivo. (C and D) 1x105 MN1-luc 

cells were injected into p16-3MR mice (n=8 for each treatment group). Mice were imaged at 

14 days post engraftment.  At day 15, GCV (25mg/kg) or PBS treatment was started for 5 

days.  Mice were then imaged again 1 day after GCV treatment had finished. Pre and post 

images show the same mice in the same order (C). (D). Densitometry of the 

bioluminescent images was performed to determine differences between vehicle and GCV 

treated animals. (E and F) Kaplan-Meier survival curves for p16-3MR (n=8) and C57BL/6 

(n=7) mice injected with MN1 and then treated with vehicle or GCV as shown in (B).  

 

Figure 5. AML-induced NOX2 derived superoxide drives BM senescence. (A) BMSC 

from p16-3MR were isolated and then cultured alone or with lineage negative cells, MN1 

cells or HoxA9/Meis1 cells for 3 days. DCF fluorescence was assessed in BMSC by flow 

cytometry (n=4). (B) human BMSC were treated with 10uM H2O2 for 6 days and then 

analysed for senescence associated B-Galactosidase staining (SA-β-gal), and (C) p16 

mRNA expression (n=4). (D) C57BL/6 mice injected with MN1. At 21 days post engraftment 

mice were sacrificed and whole BM was isolated and analysed for H2O2 production using the 

amplex red assay (n=5). (E) C57BL/6 mice were injected with MN1 cells. At 21 days post 

engraftment mice were sacrificed and BMSC were analsyed by flow cytometry for DCF 

fluorescence (n=5). (F) Real-time PCR assay was used to analyse the NOX2 mRNA 

expression level in NOX2-KD MN1 cells compare to control-KD cells (n=4). (G) Kaplan-

Meier survival curves for p16-3MR mice injected with MN1 NOX2-KD cells or MN1 control-

KD cells (n=7 in each group). (H) At the end point of the experiment BM was isolated and 
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flow cytometry was performed to detect BMSC derived RFP (n=5). (I) Kaplan-Meier survival 

curves for p16-3MR mice injected with MN1 NOX2-KD cells or MN1 control-KD cells and 

then i.p. injected with PBS or GCV at day 15, GCV (25mg/kg) for 5 days (n=4).  
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