35 research outputs found

    Sudangrass, an alternative lignocellulosic feedstock for bioenergy in Argentina

    Get PDF
    Sudangrass, Sorghum sudanense (Piper) Stapf, is a vigorous forage crop that has also been used for biogas, paper, and electricity production. Due to the large biomass yields achieved by sudangrass and the large area of potential growth in Argentina seven sudangrass accessions from a collection of S. sudanense were analyzed to evaluate their potential as feedstocks for lignocellulosic bioethanol production, and to assess whether there is an association between the response to biotic and abiotic stresses and the composition of the biomass. The biomass composition was analyzed for major cell wall polymers, monosaccharides, and elemental composition. On average, 68% of stem lignocellulosic biomass was comprised of matrix polysaccharides and crystalline cellulose, representing a potential source of sugars for bioethanol production. Xylose was the predominant matrix polysaccharide monosaccharide comprising, on average, 45% of the total sugars, followed by arabinose, glucose, galactose, galacturonic acid, mannose, glucuronic acid, and fucose. Rhamnose was not detected in any of the biomasses analyzed. Silica was the most abundant element in sudangrass stem, followed by chloride, calcium, phosphorus and sulfur. We performed saccharification analyses after pretreatments. Alkaline pretreatment was more effective than water pretreatment. Sodium hydroxide pretreatment exposed different levels of recalcitrance among sudangrass accessions, whereas the water pretreatment did not. Phenological traits were also evaluated, showing significant variability among accessions. The comparison of major cell wall polymers and monosaccharide composition between tolerant and susceptible accessions to abiotic and biotic stresses suggests an association between the composition of the biomass and the response to stress

    Valorisation Potential of Invasive Acacia dealbata, A. longifolia and A. melanoxylon from Land Clearings

    Get PDF
    Acacia spp. are invasive in Southern Europe, and their high propagation rates produce excessive biomass, exacerbating wildfire risk. However, lignocellulosic biomass from Acacia spp. may be utilised for diverse biorefinery applications. In this study, attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR), high-performance anion-exchange chromatography pulsed amperometric detection (HPAEC-PAD) and lignin content determinations were used for a comparative compositional characterisation of A. dealbata, A. longifolia and A. melanoxylon. Additionally, biomass was treated with three white-rot fungi species ( Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor), which preferentially degrade lignin. Our results showed that the pre-treatments do not significantly alter neutral sugar composition while reducing lignin content. Sugar release from enzymatic saccharification was enhanced, in some cases possibly due to a synergy between white-rot fungi and mild alkali pretreatments. For example, in A. dealbata stems treated with alkali and P. ostreatus, saccharification yield was 702.3 nmol mg -1, which is higher than the samples treated only with alkali (608.1 nmol mg -1), and 2.9-fold higher than the non-pretreated controls (243.9 nmol mg -1). By characterising biomass and pretreatments, generated data creates value for unused biomass resources, contributing to the implementation of sustainable biorefining systems. In due course, the generated value will lead to economic incentives for landowners to cut back invasive Acacia spp. more frequently, thus reducing excess biomass, which exacerbates wildfire risk

    Fast pyrolysis of rice husk under vacuum conditions to produce levoglucosan

    Get PDF
    Levoglucosan (LG)-enriched pyrolytic oils were obtained from rice husk by lab-scale fast pyrolysis under vacuum conditions. We studied the effect of the pyrolysis temperature (300−700 °C) and the pretreatment of the biomass, on the pyrolysis product yields and the selectivity for LG formation. The maximum oil yield (47 wt.%) was obtained from hydrochloric acid-leached rice husk at 400 °C, producing 1.4 times more than the amount of oil produced from untreated rice husk at the same temperature. Anhydrosugars were the predominant compounds found in bio-oils under all conditions assessed, LG being the main product. Depending on the pyrolysis conditions, LG concentration was between 9−30 wt.% considering the bio-oil mass, and between 4−60 wt.% considering the initial cellulose mass. 1H NMR experiments were carried out as an alternative and simple technique to directly determine the amount of LG in bio-oils.Fil: TĂ©llez Bernal, Jhoan Francisco. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba; ArgentinaFil: Silva, Mariana Paola. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias AgrĂ­colas y Ambientales. Universidad de Buenos Aires. Facultad de AgronomĂ­a. Instituto de Investigaciones en Biociencias AgrĂ­colas y Ambientales; Argentina. University of York; Reino UnidoFil: Simister, Rachael. University of York; Reino Unido. Centre For Novel Agricultural Products (cnap); Reino UnidoFil: Gomez, Leonardo Dario. University of York; Reino UnidoFil: Fuertes, Valeria Cintia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba; ArgentinaFil: de Paoli, Juan Martin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba; ArgentinaFil: Moyano, Elizabeth Laura. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba; Argentin

    Nutrient and drought stress:Implications for phenology and biomass quality in miscanthus

    Get PDF
    Background and Aims : The cultivation of dedicated biomass crops, including miscanthus, on marginal land provides a promising approach to the reduction of dependency on fossil fuels. However, little is known about the impact of environmental stresses often experienced on lower-grade agricultural land on cell-wall quality traits in miscanthus biomass crops. In this study, three different miscanthus genotypes were exposed to drought stress and nutrient stress, both separately and in combination, with the aim of evaluating their impact on plant growth and cell-wall properties. Methods : Automated imaging facilities at the National Plant Phenomics Centre (NPPC-Aberystwyth) were used for dynamic phenotyping to identify plant responses to separate and combinatorial stresses. Harvested leaf and stem samples of the three miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus and Miscanthus × giganteus) were separately subjected to saccharification assays, to measure sugar release, and cell-wall composition analyses. Key Results : Phenotyping showed that the M. sacchariflorus genotype Sac-5 and particularly the M. sinensis genotype Sin-11 coped better than the M. × giganteus genotype Gig-311 with drought stress when grown in nutrient-poor compost. Sugar release by enzymatic hydrolysis, used as a biomass quality measure, was significantly affected by the different environmental conditions in a stress-, genotype- and organ-dependent manner. A combination of abundant water and low nutrients resulted in the highest sugar release from leaves, while for stems this was generally associated with the combination of drought and nutrient-rich conditions. Cell-wall composition analyses suggest that changes in fine structure of cell-wall polysaccharides, including heteroxylans and pectins, possibly in association with lignin, contribute to the observed differences in cell-wall biomass sugar release. Conclusions: The results highlight the importance of the assessment of miscanthus biomass quality measures in addition to biomass yield determinations and the requirement for selecting suitable miscanthus genotypes for different environmental conditions

    Optimization of biomass pretreatments using fractional factorial experimental design

    Get PDF
    Background: Pretreatments are one of the main bottlenecks for the lignocellulose conversion process and the search for cheaper and effective pretreatment methodologies for each biomass is a complex but fundamental task. Here, we used a 2Îœ5-1 fractional factorial design (FFD) to optimize five pretreatment variables: milling time, temperature, double treatment, chemical concentration, and pretreatment time in acid-alkali (EA) and acid-organosolv (EO) pretreatments, applied to elephant grass leaves. Results: FFD allowed optimization of the pretreatment conditions using a reduced number of experiments and allowed the identification of secondary interactions between the factors. FFD showed that the temperature can be kept at its lower level and that the first acid step can be eliminated in both pretreatments, without significant losses to enzymatic hydrolysis. EA resulted in the highest release of reducing sugars (maximum of 205 mg/g substrate in comparison to 152 mg/g in EO and 40 mg/g in the untreated sample), using the following conditions in the alkali step: [NaOH] = 4.5% w/v; 85 °C and 100 min after ball milling the sample. The factors statistically significant (P < 0.05) in EA pretreatment were NaOH concentration, which contributes to improved hydrolysis by lignin and silica removal, and the milling time, which has a mechanical effect. For EO samples, the statistically significant factors to improved hydrolysis were ethanol and catalyst concentrations, which are both correlated to higher cellulose amounts in the pretreated substrates. The catalyst is also correlated to lignin removal. The detailed characterization of the main hemicellulosic sugars in the solids after pretreatments revealed their distinct recalcitrance: glucose was typically more recalcitrant than xylose and arabinose, which could be almost completely removed under specific pretreatments. In EA samples, the removal of hemicellulose derivatives was very dependent on the acid step, especially arabinose removal. Conclusion: The results presented herewith contribute to the development of more efficient and viable pretreatments to produce cellulosic ethanol from grass biomasses, saving time, costs and energy. They also facilitate the design of enzymatic cocktails and a more appropriate use of the sugars contained in the pretreatment liquors, by establishing the key recalcitrant polymers in the solids resulting from each processing step

    Sustainable Galactarate-Based Polymers : Multi-Enzymatic Production of Pectin-Derived Polyesters

    Get PDF
    Large amounts of agricultural wastes are rich in pectins that, in many cases, disrupt the processing of food residues due to gelation. Despite pectins being a promising sustainable feedstock for bio-based chemical production, the current pathways to produce platform molecules from this polysaccharide are hazardous and entail the use of strong acids. The present work describes a sequence of biocatalyzed reactions that involves 1) the extraction of pectin from sugar beet pulp and enzymatic recovery of galacturonic acid (GalA), followed by 2) the enzymatic oxidation of the GalA aldehyde and the recovery of galactaric acid (GA), and 3) the biocatalyzed polycondensation of GA to obtain fully bio-based polyesters carrying lateral hydroxy functionalities. The acid-free pectin extraction is optimized using enzymes and microwave technology. The conditions for enzymatic oxidation of GalA allow the separation of the GA produced by a simple centrifugation step that leads to the enzyme-catalyzed polycondensation reactions

    Biorefining Potential of Wild-Grown Arundo donax, Cortaderia selloana and Phragmites australis and the Feasibility of White-Rot Fungi-Mediated Pretreatments

    Get PDF
    Arundo donax, Cortaderia selloana and Phragmites australis are high-biomass-producing perennial Poalean species that grow abundantly and spontaneously in warm temperate regions, such as in Mediterranean-type climates, like those of Southern Europe, Western United States coastal areas, or in regions of South America, South Africa and Australia. Given their vigorous and spontaneous growth, biomass from the studied grasses often accumulates excessively in unmanaged agro-forestry areas. Nonetheless, this also creates the demand and opportunity for the valorisation of these biomass sources, particularly their cell wall polymers, for biorefining applications. By contrast, a related crop, Miscanthus × giganteus, is a perennial grass that has been extensively studied for lignocellulosic biomass production, as it can grow on low-input agricultural systems in colder climates. In this study Fourier transform mid-infrared spectroscopy (FTIR), high-performance anion-exchange chromatography (HPAEC) and lignin content determinations were used for a comparative compositional characterisation of A. donax, C. selloana and P. australis harvested from the wild, in relation to a trial field-grown M. × giganteus high-yielding genotype. A high-throughput saccharification assay showed relatively high sugar release values from the wild-grown grasses, even with a 0.1M NaOH mild alkali pretreatment. In addition to this alkaline pretreatment, biomass was treated with white-rot fungi (WRF), which preferentially degrade lignin more readily than holocellulose. Three fungal species were used: Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor. Our results showed that neutral sugar contents are not significantly altered, while some lignin is lost during the pretreatments. Furthermore, sugar release upon enzymatic saccharification was enhanced, and this was dependent on the plant biomass and fungal species used in the treatment. To maximise the potential for lignocellulose valorisation, the liquid fractions from the pretreatments were analysed by high performance liquid chromatography – photodiode array detection – electrospray ionisation tandem mass spectrometry (HPLC-PDA-ESI-MS(n)). This study is one of the first to report on the composition of WRF-treated grass biomass, while assessing the potential relevance of breakdown products released during the treatments, beyond more traditional sugar-for-energy applications. Ultimately, we expect that our data will help promote the valorisation of unused biomass resources, create economic value, while contributing to the implementation of sustainable biorefining systems
    corecore