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Abstract

Sudangrass, Sorghum sudanense (Piper) Stapf, is a vigorous forage crop that has also

been used for biogas, paper, and electricity production. Due to the large biomass yields

achieved by sudangrass and the large area of potential growth in Argentina seven sudan-

grass accessions from a collection of S. sudanense were analyzed to evaluate their poten-

tial as feedstocks for lignocellulosic bioethanol production, and to assess whether there is

an association between the response to biotic and abiotic stresses and the composition of

the biomass. The biomass composition was analyzed for major cell wall polymers, mono-

saccharides, and elemental composition. On average, 68% of stem lignocellulosic biomass

was comprised of matrix polysaccharides and crystalline cellulose, representing a potential

source of sugars for bioethanol production. Xylose was the predominant matrix polysaccha-

ride monosaccharide comprising, on average, 45% of the total sugars, followed by arabi-

nose, glucose, galactose, galacturonic acid, mannose, glucuronic acid, and fucose.

Rhamnose was not detected in any of the biomasses analyzed. Silica was the most abun-

dant element in sudangrass stem, followed by chloride, calcium, phosphorus and sulfur. We

performed saccharification analyses after pretreatments. Alkaline pretreatment was more

effective than water pretreatment. Sodium hydroxide pretreatment exposed different levels

of recalcitrance among sudangrass accessions, whereas the water pretreatment did not.

Phenological traits were also evaluated, showing significant variability among accessions.

The comparison of major cell wall polymers and monosaccharide composition between tol-

erant and susceptible accessions to abiotic and biotic stresses suggests an association

between the composition of the biomass and the response to stress.

Introduction

Argentina is a large country (3.761.274 km2) and has a range of different climates and soils.

Despite this environmental diversity, only three crops stand as feedstocks for biofuel produc-

tion in the country. Corn and sugarcane are used as feedstocks for first generation (1G)
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bioethanol production and soybean is used as feedstock for biodiesel production. Together

they account for more than 90% of both the productivity and the planted area estimated for

2019 [1]. Independently of the market to which these crops are destined for, it would be highly

desirable to increase the diversity of feedstocks in terms of the productivity and planted area.

Argentina has a number of industrial plants that produce 1G bioethanol but currently there is

no production of second generation (2G) bioethanol. Given the biomass production in the

country, there is a possibility of establishing 2G bioethanol production. Besides policy, invest-

ment and demand/supply chains, one important issue in this area is the prospection of suitable

biomass feedstock.

The Sorghum genus includes three distinct morphotypes that are used as forages: sudan-

grass, forage sorghums, and sorghum x sudangrass hybrids [2]. Sudangrass is a vigorous forage

crop that has a remarkable drought tolerance [3], making it an ideal alternative to fill feed gaps

during water shortages. As a C4 species and summer cover crop, it also has the potential to

produce large amounts of biomass that will build soil quality in a short period of time, contrib-

uting or recycling nitrogen, outcompeting weed growth and reducing soil erosion by keeping

the soil surface covered [4]. However, as a warm-season crop plants are greatly injured or even

killed by frost [5]. In Argentina, sudangrass used as green feed, does not cover the main feed

deficit in winter. However, in summer it allows the concentration of many cattle heads per

unit area, and with good management can help achieving higher weight gains than with natu-

ral grasslands [6, 7]. Besides these advantages, it has also been used as feedstock for biogas,

paper, and electricity production [8].

Due to the large biomass yields achieved by sudangrass and the large area of potential

growth in Argentina, we propose here that it could constitute a suitable feedstock for 2G etha-

nol production. Its development as a feedstock would require a deeper knowledge of the bio-

mass composition and variability across genotypes in their stress responses to an increasingly

unpredictable environment. In this study, phenological and agricultural parameters, as well as

the biomass composition in stems of sudangrass accessions have been investigated in order to

evaluate the potential of this species as feedstock for producing advanced biofuels. The associa-

tion between the composition of the biomass and the response to biotic and abiotic stresses,

under different environments, has also been assessed.

Materials andmethods

Plant material

Plants of different accessions of sudangrass (Sorghum sudanense (Piper) Stapf) [9] obtained

from the germplasm collection of sorghum of the National Institute of Agricultural Technol-

ogy, INTA (Argentina) were field-grown in 2012–2013 at the Manfredi Research Experimental

Station, Manfredi, Córdoba, Argentina.

Seven S. sudanense accessions (R.S 2199 Sudanense, R.S 2198 Sudanense, R.S 1370 Syn4, R.S

841 Sudanense, R.S 1601 Tift, R.S 1594 Wealer, and R.S 1731 Juar 20) were randomly chosen

from the collection and the 5th internodes of 10 plants from each accession were used for

determining the composition of cell wall components. The 5th internodes were harvested at

plant senescence and the 10 samples from each accession were pooled from which three repli-

cates by sample were analyzed.

Response to stresses. Response to spontaneous infection of bacterioses and stem borer

attack and to spontaneous occurrence of drought and frost was measured throughout plant life

cycle in the seven field-grown sudangrass accessions as plants encountered these stresses

sometime during their growth period. Response to the named stresses was measured upon a

scale that ranged from 0 to 4, where 0 stands for resistance and 4 for susceptibility [10].

Sudangrass as a lignocellulosic feedstock for bioenergy
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Additional sudangrass accessions (R.S 1842 Honey Sor. for bacterioses and stem borer, and R.S

2305 I.S. 1143 N.12 for drought and frost) were also grown at Manfredi´s research experimen-

tal field and used as susceptibility controls because they have shown the same response to these

stresses every time INTA´s sorghum germplasm collection was grown in the field. Therefore,

these susceptibility controls were used instead of control groups for each of the seven geno-

types that were not exposed to these stresses.

Bacterioses and stem borer attack caused damage in leaf-blade and bottom and middle part

of stems, respectively. Drought and frost, defined as temperature below the basal temperature

of sorghum, primarily caused flower abortion.

Climatic data (average, maximum and minimum temperature, rainfall, frost, average

humidity, average and maximum wind speed, and soil temperature) were automatically regis-

tered on a daily basis and throughout plant life cycle by a meteorological station located at the

Manfredi Research Experimental Station (S1 Table). The field was not irrigated, thus water

provision to plants depended on rainfall.

Phenological traits. Phenological traits were measured for the 7 different accessions (7

plants per accession). Plant height, panicle exertion, and tiller number were measured at the

time at which 50% of the plants of each accession finished growing. Flowering time was deter-

mined at the time at which 50% of the plants of each accession had flowered. Days to maturity

were determined at the time at which 50% of the plants of each accession had reached maturity

developmental stage.

Solubles. The pooled fifth internodes of sudangrass stems were milled and the powder

was washed with 1.5 ml ethanol, vortexed and spun down for 20 minutes at 13,000 rpm. The

supernatant was removed, air dried, washed with 1 ml of 90% aqueous DMSO and left rocking

over-night. Then, the sample was centrifuged for 20 minutes, washed 4 times with 1 ml etha-

nol, and centrifuged for 10 minutes. The samples were dried under vacuum for 90 minutes at

60˚C and weighed out after extraction. Finally, the solubles were calculated as the difference

between the original sample weight and the washed sample weight, expressed as a percentage.

Lignin determination. Biomass powder was weighed out (4 mg) into 2 ml tubes. Lignin

was determined according to Foster et al. (2010) [11]. The biomass was heated at 50˚C for 3

hours, after adding 250 μl of acetyl bromide solution (25% of acetyl bromide and 75% of glacial

acetic acid in volume), vortexing every 15 minutes. After the samples were cooled to room

temperature, the content was transferred into 5 ml volumetric flasks. A further 1 ml sodium

hydroxide 2 M was used to rinse the tubes, pouring the NaOH into the 5 ml flasks. 175 μl of

hydroxylamine HCl 0.5 M was added to the volumetric flasks and, after vortexing, the latter

were filled up to 5 ml with glacial acetic acid and mixed several times. Finally, in order to mea-

sure the 280 nm UV adsorption by spectrophotometer, 100 μl of each sample was diluted in

900 μl of glacial acetic acid. The amount of lignin was calculated using the following formula:

[absorbance/(coefficient pathlength)] � [(total volume � 100%)/biomass weight], where coeffi-

cient = 17.75, pathlength = 1, total volume = 5, biomass weight = 4.

Matrix polysaccharides. Dry biomass powder (4 mg) was partially hydrolyzed by adding

0.5 ml of 2M TriFluoroAcetic acid. Then, the vials were flushed with dry argon, mixed and

heated at 100˚C for 4 hours, vortexing periodically. The vials were then cooled to room tem-

perature and dried in centrifugal evaporator with fume extraction overnight. The pellets were

washed twice with 500 μl of 2-propanol and vacuum dried. Finally, the samples were resus-

pended in 200 μl of deionised water, filtered with 0.45 μm PTFE filters, and the monosaccha-

ride profile analyzed. To resolve the monosaccharide profile of non-cellulosic polysaccharides,

samples were analyzed using high-performance anion-exchange chromatography (HPAEC)

on a CarboPac PA-20 column with pulsed amperometric detection as described in Jones et al.

(2003) [12]. Separated monosaccharides were quantified by external calibration using an
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equimolar mixture of monosaccharide standards, which had also been treated with 2M TFA in

the same way.

Cellulose. Biomass dry pellets after TFA hydrolysis were washed once with 1.5 ml of

water, and three times using 1.5 ml of acetone. The pellets were left to air dry overnight before

complete hydrolysis by, adding 90 μl of 72% (p/v) sulfuric acid, incubating at room tempera-

ture for 4 hours, 1.89 ml of water was subsequently added and the sample was heated for 4

hours at 120˚C. The glucose (Glu) content of the supernatant was assessed using the colorimet-

ric Anthrone assay, using a Glu standard curve.

Saccharification analysis. Saccharification potential was determined using an automated

robotic platform according to Gomez et al. (2010) [13]. In brief, loading of plant powder into

96-well plates was done using a custom-made robotic platform (Labman Automation, Stokes-

ley, North Yorkshire, UK), and saccharification assays were performed after alkali pretreat-

ment at 94˚C for 30 min. Enzymatic hydrolysis was carried out using an enzyme cocktail with

a 4:1 ratio of Celluclast and Novozyme 188 (Novozymes Enzymes).

Statistical analyses. InfoStat software, version updated 07-10-2018, was used for Statisti-

cal analyses [14]. Variance analysis was used to test phenotypic data and cell wall components.

Saccharification analyses were tested using general and mixed linear models. LSD Fisher’s test

was used to compare means.

Results

Sudangrass biomass composition

The biomass composition of a feedstock is a key parameter to evaluate the potential of different

genotypes for different applications. The major cell wall components were determined in the

seven field-grown sudangrass genotypes to evaluate the variability of biomass composition

between accessions and, in a longer term, the potential of this species as feedstock for produc-

ing cellulosic biofuels. For all seven accessions, the biomass composition was analyzed for solu-

ble extractives, lignin, matrix polysaccharides, and crystalline cellulose contents (Fig 1).

The content of soluble extractives showed statistically significant differences across sudan-

grass accessions (p = 0.0007) (Fig 1A). Three genotypes (R.S 1594 Wealer, R.S 2198 Sudanense,

and R.S 2199 Sudanense) accounted for the highest contents of soluble extractives as compared

to the remaining genotypes. In its turn R.S 1731 Juar 20 and R.S 1601 Tift showed the lowest

contents of soluble extractives and differed significantly from the rest of the accessions (Fig

1A). The percentage of lignin ranged from 31.28% in R.S 841 Sudanense to 24.94% in R.S 2199

and R.S 2198 Sudanense, and showed no statistically significant differences across sudangrass

accessions (p = 0.5782) (Fig 1A). On average, the matrix polysaccharide fraction (34.42%) was

slightly higher than the crystalline cellulose fraction (33.74%) (Fig 1B). The former fraction

showed no statistically significant differences across accessions (p = 0.5565) and ranged from

38.44% in R.S 2198 Sudanense to 31.48% in R.S 841 Sudanense. The content of crystalline cellu-

lose that ranged from 40.93% in R.S 1731 Juar 20 to 27.44% in R.S 841 Sudanense also showed

no statistically significant differences across accessions (p = 0.5969) (Fig 1A). Taken together,

these findings indicate that all the extreme values of the variables assayed were concentrated in

only four genotypes R.S 2198 Sudanense, R.S 841 Sudanense, R.S 1594 Wealer, and R.S 1731

Juar 20 (Fig 1A).

The elemental composition of the different biomass samples was determined across acces-

sions (Fig 2). Silica (Si) was the most abundant of the elements determined in sudangrass

stem, followed by chloride (Cl), calcium (Ca), phosphorus (P) and sulfur (S) (Fig 2A). Si con-

tent showed statistically significant differences across accessions (p = 0.0012) and varied from

1.405% in R.S 1601 Tift to 1.140% in R.S 1594 Wealer. Cl content showed statistically
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significant differences across accessions (p = 0.0001) and varied from 0.800% in R.S 2198 Suda-

nense to 0.450% in R.S 1370 Syn4. Levels of S ranged from 0.070% in R.S 2199 Sudanense and

R.S 2198 Sudanense to 0.045% in R.S 1370 Syn4 and R.S 841 Sudanense, and showed statisti-

cally significant differences across accessions (p = 0.0012). The variation of P extended from

0.190% in R.S 1370 Syn4 to 0.110% in R.S 1594 Wealer, and showed statistically significant dif-

ferences across accessions (p = 0.0014). Ca content showed statistically significant differences

across accessions (p = 0.0167). Ca content was highest (0.365%) in R.S 2199 Sudanense, con-

trasting with the lowest value (0.120%; 0,145%; 0,145%; 0.150%; and 0.180%) determined in R.

S 841 Sudanense, R.S 1601 Tift, R.S 1731 Juar 20, R.S 1370 Syn4, and R.S 1594 Wealer, respec-

tively (Fig 2B). Together, these results point out that the content of Si, S, P and Cl varied 27%,

56%, 73% and 78%, respectively in the accessions analyzed; while the variation was 304% for

Ca. Moreover, three genotypes contained the lowest values of these elements; whereas, four

genotypes were responsible for the uppermost values (Fig 2B).

The monosaccharides composition of the matrix polysaccharides of sudangrass stem is

shown in Fig 3. Xylose (Xyl) was the predominant monosaccharide comprising, on average,

45.02% of the total sugars, followed by arabinose (Ara) (26.90%), Glu (16.65%), galactose (Gal)

Fig 1. Major cell wall components in stems of sudangrass. (A) Major cell wall components by genotype. Vertical bars stand for standard deviation of the
means. Note that soluble extractives show statistically significant differences across accessions (See S2 Table). (B) Average of major cell wall components.

https://doi.org/10.1371/journal.pone.0217435.g001
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(8.50%), galacturonic acid (GalA) (1.26%), mannose (Man) (1.05%), glucuronic acid (GluA)

(0.59%), and fucose (Fuc) (0.03%). Rhamnose was not detected in any of the biomasses ana-

lyzed (Fig 3). Concentrations of Xyl (p = 0.0003), Ara (p = 0.0084), Gal (p = 0.0503), and GalA

(p = 0.0001) showed statistically significant differences across accessions, respectively. R.S 2199

Sudanense accounted for the highest concentration of the four most abundant monosaccha-

rides: Ara, Gal, Glu, and Xyl; on the other hand, R.S 1731 Juar 20 showed the lowest concentra-

tion of Ara, Gal, Glu, and Man (Fig 3B). R.S 2198 Sudanense, R.S 1731 Juar 20, and R.S 841

Sudanense had more Man, GalA, and GluA, as concentrations of these monosaccharides were

1.7-, 2.1-, and 1.8-fold their respective average concentrations (Fig 3B). No GluA was detected

in R.S 1601 Tift, R.S 1594Wealer, and R.S 1731 Juar 20 (Fig 3B).

For all seven accessions, the matrix polysaccharide average concentration of pentoses

totalled 170.23 μg/mg biomass whereas that of hexoses (excluding sugar acids) reached

62.09 μg/mg sudangrass biomass. The ratio pentoses:hexoses was 2.7:1 in the matrix

polysaccharides.

Fig 2. Cell wall elements in stems of sudangrass. (A) Average of elements in cell walls. (B) Cell wall elements by genotype. Vertical bars stand for standard
deviation of the means. Note that all the elements analyzed show statistically significant differences across accessions.

https://doi.org/10.1371/journal.pone.0217435.g002
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Saccharification analyses were performed across accessions following water and sodium

hydroxide pretreatments (Fig 4). Statistically significant differences were detected between

pretreatments (p<0.0001), across accessions (p<0.0001), and in the pretreatment: accession

interaction (p<0.0001). The sodium hydroxide pretreatment was more effective since more

sugars were released than in the water pretreatment. The average level of reducing sugars

Fig 3. Monosaccharide composition of the matrix polysaccharides in stem cell walls of sudangrass.Monosaccharide composition of the matrix
polysaccharides by sudangrass genotype. Note that GalA, Xyl, Gal, and Ara show statistically significant differences across accessions. (S3 Table).

https://doi.org/10.1371/journal.pone.0217435.g003

Fig 4. Saccharification analyses across sudangrass accessions following water and sodium hydroxide pretreatments. Vertical
bars stand for standard deviation of the means. Note that the sodium hydroxide pretreatment was more effective since more sugars
were released than in the water pretreatment. (S4 Table).

https://doi.org/10.1371/journal.pone.0217435.g004
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released in R.S 1594 Wealer and R.S 841 Sudanense upon sodium hydroxide pretreatment was

statistically higher than in the five remaining accessions analyzed, indicating that, under these

experimental conditions, these five accessions were far more recalcitrant genotypes than R.S

1594Wealer and R.S 841 Sudanense (Fig 4). Only two genotypes, R.S 1594Wealer and R.S 841

Sudanense, exhibited average levels of released reducing sugars that exceeded the overall aver-

age level of reducing sugars (53.63 nmol/mg.h) released across the 7 genotypes after sodium

hydroxide pretreatment.

Phenotypic data and differential response to biotic and abiotic stresses

Several phenological traits: flowering time, days to maturity, panicle exertion, number of til-

lers, plant height, productivity (Table 1) and response to frost, drought, bacterioses, and stem

borer attack (Fig 5) were evaluated for phenotypic and genetic diversity of seven sudangrass

accessions. Flowering time and maturity revealed a great variability among the genotypes stud-

ied, as shown by more than three weeks difference between the earliest and latest flowering

and maturing genotypes, and in accordance with the statistically significant differences deter-

mined across accessions for days to flowering time (p<0.0001) and maturity (p<0.0001)

(Table 1).

Plant height also reflected significant variability (p<0.0001), and five groups of accessions

with diverging plant height were clearly distinguished. The tallest genotype (220cm), R.S 2199

Sudanense almost double the plant height of R.S 1370 Syn4, the shortest genotype. Intermedi-

ate plant height groups, composed of R.S 2198 Sudanense, R.S 841 Sudanense, R.S 1601 Tift, R.

S 1594 Wealer, and R.S 1731 Juar 20 were 175cm tall, on average (Table 1).

Number of tillers differed significantly across accessions (p<0.0001). A positive correlation

between number of tillers and plant height (r = 0.80; p = 0.0314�) was observed in the acces-

sions studied (Fig 6). Panicle exertion, length of peduncle between the base of the panicle

and the flag leaf of the plant, exhibited statistically significant differences across accessions

(p<0.0001), and also correlated positively with plant height (r = 0.85; p = 0.0146�) and num-

ber of tillers (r = 0.79; p = 0.0357�) (Fig 6).

Table 1. Phenological traits across sudangrass accessions.

Sample
name

Days to Flowering Days to Maturity Panicle
exertion (cm)

Tiller number Plant height (cm)a Productivity (Kg DM / ha)a

R.S 2199 Sudanense 75±1.3
E

127±1.5
E

10±1.2
D

21±1.3
D

220±1.2
F

7354±44.3
F

R.S 2198 Sudanense 55±1.3
B

105±1.1
B

8±1.1
C

16±1.2
C

210±1.4
E

6981±52.9
E

R.S 1370 Syn4 52±2.0
A

105±1.7
B

5±0.7
B

13±1.7
B

115±1.0
A

3315±37.4
A

R.S 841 Sudanense 63±1.8
D

106±1.7
B

5±1.0
B

15±1.1
C

150±1.5
B

4683±57.5
B

R.S 1601 Tift 57±1.5
B

101±1.1
A

7±1.1
C

13±1.7
B

165±1.5
C

5263±58.0
C

R.S 1594 Wealer 60±1.9
C

112±2.3
D

3±0.7
A

9±1.6
A

150±1.3
B

4661±48.2
B

R.S 1731 Juar 20 62±1.7
C

110±1.3
C

10±1.3
D

15±1.3
C

200±1.8
D

6588±69.8
D

Means with the same letter are not significantly different (p> 0.05). (See S5 Table).
a Plant height of sudangrass accessions was used to calculate productivity according to the regression between accumulated biomass (Kg DM/ha) and plant height (cm)

[7].

https://doi.org/10.1371/journal.pone.0217435.t001
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Sudangrass accession R.S 1842 Honey Sor., used as susceptible control for bacterioses and

stem borer, scored 4 at 8-leaf developmental stage for bacterioses 3 at boot developmental

stage for stem borer, indicating presence of bacterial inoculum and stem borer in the field (Fig

5A). Similar responses to both stresses had been observed on previous occasions under Man-

fredi environmental conditions, highlighting the relevance of using this accession as control to

the named biotic stresses.

The response to stem borer was uniform across sudangrass accessions. Conversely, the

response to bacterioses was more diverse, R.S 1601 Tift being the more tolerant genotype (Fig 5A).

Sudangrass accession R.S 2305 I.S. 1143 N.12, used as susceptible control to drought and

frost scored 4 to both stresses at flowering stage, in response to the lack of rainfall for almost

three weeks and occasional minimum temperatures below the basal temperature of sorghum

registered during this plant developmental stage (Fig 5B).

Response to biotic stresses reflected relevant variability among sudangrass genotypes (Fig

5B). As shown for bacterioses, R.S 1601 Tift also was the most tolerant accession to frost (Fig

5B). Two genotypes displayed the most tolerant response to drought: R.S 1594 Wealer and R.S

841 Sudanense (Fig 5B).

Biomass composition and differential response to stresses

To investigate whether the content and composition of cell wall polymers relates with the

response to abiotic stress and pathogen attack, we analyzed these parameters across different

accessions.

Even though the content of soluble extractives showed statistically significant differences

across sudangrass accessions, no relation was detected with the response to biotic and abiotic

stresses (Figs 1A and 5). In a similar manner, the elemental composition of the different bio-

mass samples showed no relation with the response to abiotic stress and pathogen attack (Figs

2 and 5).

Fig 5. Differential response to biotic and abiotic stresses across sudangrass accessions. (A) Response to stem borer and
bacterioses attacks. Accession R.S 1842 Honey Sor. was used as susceptibility control (B) Response to frost and drought. Accession R.
S 2305 I.S. 1143 N.12 was used as susceptibility control.

https://doi.org/10.1371/journal.pone.0217435.g005
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R.S 1731 Juar 20 accounted for the lowest concentration of Ara and scored 3 to bacterioses

and 2 to frost, differing from R.S 2199 Sudanense that contained the highest concentration of

Ara and scored 4 to bacterioses and 3 to frost (Figs 3 and 5). Likewise, R.S 1731 Juar 20

accounted for the lowest concentration of Gal and scored 3 to bacterioses and 2 to frost, differ-

ing from R.S 2199 Sudanense that contained the highest concentration of Gal and scored 4 to

bacterioses and 3 to frost (Figs 3 and 5). Also, R.S 1594Wealer contained the lowest concentra-

tion of Xyl and scored 3 to bacterioses, 2 to frost and 1 to drought, differing from R.S 2199

Sudanense that contained the highest concentration of Xyl and scored 4 to bacterioses, 3 to

frost and to 2 drought (Figs 3 and 5). Furthermore, R.S 1601 Tift accounted for the lowest con-

centration of GalA and scored 1 to bacterioses and frost, differing from R.S 1731 Juar 20 that

contained the highest concentration of GalA and scored 3 to bacterioses and 2 to frost (Figs 3

and 5).

Together, these findings suggest that accessions that exhibited the lowest concentrations of

Ara, Gal, Xyl, and GalA appear to be accompanied by lower scores of response to bacterioses,

frost, and drought than in accessions that exhibited the highest concentrations of these mono-

ssacharides. It is also likely, solely based on the monosaccharide composition that higher levels

of Xyl and Ara in R.S 2199 Sudanensemight stand for higher levels of arabinoxylans. The com-

parison of biotic and abiotic responses with saccharification analyses following sodium

hydroxide pretreatment revealed higher amounts of reducing sugars in the most resistant

genotypes to drought compared to the most susceptible one (Figs 4 and 5)

Principal component analysis

The Principal component analysis (PCA) is a standard technique for visualizing high dimen-

sional data, reducing the dimensionality (the number of variables) of a data set by maintaining

as much variance as possible. For ease of interpretation, the full set of data from biomass and

agronomic parameters, and cell wall elements and monosaccharides were subjected to PCA to

obtain graphical representations of the relationships among the 7 sorghum genotypes (Fig 6).

In the bi-plot, a summary of total variation of the analytical parameters is presented by the first

(PC1) and second (PC2) principal components, which explained the 70.4% of total variance

(Fig 7). PC1 and PC2 contributed to 43.4% and 27.0% of total variance, respectively, and dis-

tinguished three groups of genotypes (encircled in blue solid line) and five major sets of vari-

ables (encircled in green solid line). Group 1 is clearly defined and composed of accessions R.S

1370 Syn4, R.S 841 Sudanense, and R.S 1601 Tift; group 2 is composed of accessions R.S 1731

Juar 20 and R.S 1594Wealer; and group 3 of accessions R.S 2198 Sudanense and R.S 2199 Suda-

nense. Set 1 contained three variables: P, Si, and GluA; set 2 only contained lignin; set 3 con-

tained GalA, crystalline cellulose, and matrix polysaccharides; set 4 contained S, Cl, and Ca;

and set 5 contained seven variables: Man, solubles, Fuc, Ara, Xyl, Glu, and Gal (Fig 7)

The acute angles between vectors representing the variables of set 1 indicate that P, Si, and

GluA were positively associated (Fig 7). Positive correlation between P and Si (r = 0.83;

p = 0.0212�) is consistent with this result (Fig 6). A similar analysis can be applied to variables

of set 3, 4 and 5. Within set 4, two positive correlations were determined: S with Cl (r = 0.85;

p = 0.0153�) and Ca (r = 0.76; p = 0.0461�). Several positive correlations were detected within

set 5: Ara with solubles (r = 0.89; p = 0.0287�), Glu (r = 0.86; p = 0.0358�), and Man (r = 0.86;

p = 0.0358�); and between Gal and Glu (r = 0.86; p = 0.0358�) (Figs 6 and 7).

The sudangrass genotypes within group 1 were highly associated with lignin (Fig 7). R.S 841

Sudanense and R.S 1601 Tift displayed the highest and second highest values of lignin, respec-

tively (Fig 1A). In its turn, lignin was negatively correlated with crystalline cellulose (r = -0.85;

p = 0.0162�), S (r = -0.76; p = 0.0461�), and Ca (r = -0.80; p = 0.0307�) (Figs 6 and 7). Variables
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of set 3 were strongly associated with R.S 1731 Juar 20 of group 2 (Fig 7), showing this geno-

type the highest value of crystalline cellulose and GalA (Figs 1A and 3B). As for Sorghum

accessions of group 3 they were strongly associated with variables of set 4 since R.S 2199 Suda-

nense and R.S 2198 Sudanense exhibited the highest levels of S, Cl and Ca (Figs 7 and 1A).

Discussion

Germplasm collections are important sources of genetic variability. Investigating the genetic,

biochemical and agronomical features, and the bioenergy potential of the accessions compris-

ing any germplasm collection underscores and justifies their conservation. Sorghum sudanense

is a versatile species: the whole plant can be used in grazing, hay or silage. Identifying other

uses beyond forage, would add alternatives to the agronomical systems where this crop is

incorporated and provide extra income for farmers. To this end, seven sudangrass accessions,

randomly chosen from a collection of sorghum germplasm, were analyzed to evaluate their

potential as feedstocks for lignocellulosic bioethanol production, and to assess whether there is

a correlation between the response to biotic and abiotic stresses and the composition of the

biomass.

The complexity of the major structural and chemical components of secondary cell walls is

the basis of lignocellulosic biomass recalcitrance [15]. Therefore, the analysis of the variability

Fig 6. Spearman´s correlation coefficients among phenological traits, major polymers, monosaccharides, and elements in stem cell walls of sudangrass
accessions.

https://doi.org/10.1371/journal.pone.0217435.g006

Sudangrass as a lignocellulosic feedstock for bioenergy

PLOSONE | https://doi.org/10.1371/journal.pone.0217435 May 23, 2019 11 / 16

https://doi.org/10.1371/journal.pone.0217435.g006
https://doi.org/10.1371/journal.pone.0217435


in biomass composition in accessions of Sorghum sudanense from a germplasm collection can

provide insights into the potential for using this feedstock for bioenergy applications.

On average, the matrix polysaccharide and the crystalline cellulose fractions of sudangrass cell

wall represented 68.16% of the total biomass, i.e. a potential source of sugars for bioethanol pro-

duction bearing in mind that it can be converted into monosaccharides for fermentation [16].

The crystallinity of cellulose makes this polysaccharide difficult to hydrolyze by enzymes. Negative

correlations between cellulose crystallinity and hydrolysis yield potential across different varieties

of Sorghum bicolor have been reported [17]. Genetic engineering approaches aimed at reducing

cellulose crystallinity in Arabidopsis [18] and increasing cellulose abundance in barley [19] by

altering the expression of endogenous genes have been achieved with a significant penalty on

plant growth and performance. As for S. sudanense it should be borne in mind that any attempt

to reduce the crystalline cellulose fraction may lead to an increase of lignin content, in accordance

with the negative correlation (r = -0.85; p = 0.0162�) estimated between crystalline cellulose and

lignin (Fig 6) in the cell walls of the 5th internodes of stems from sudangrass accessions.

In secondary cell walls, the polysaccharide network is impregnated and coated by lignin,

providing rigidity and strength. On average, the lignin fraction represented 27.94% of sudan-

grass cell wall composition. Straw from rice lines with high reducing sugar release (above 90

nmol/mg. h) showed lower lignin content, suggesting that high saccharification potential in

rice straw was due mainly to low lignin content [20]. Interestingly, rice lines with reducing

sugar release below 90 nmol/mg.h showed more variation in lignin content, indicating that

Fig 7. Principal component analysis for major cell wall polymers, monosaccharides, and agronomic parameters in seven
sudangrass accessions. Sets (1, 2, 3, 4, and 5) of variables are encircled in green solid lines and groups (1, 2, and 3) of sudangrass
accessions are encircled in blue solid lines.

https://doi.org/10.1371/journal.pone.0217435.g007
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saccharification is controlled by multiple functional genes combined together to modulate the

composition and interaction of the cell wall polymers [20].

Given the heterogeneous composition of lignocellulosic biomass, fermentation of pentose

and hexose sugars derived from it represent a challenge. S. cerevisiae cannot ferment pentose

sugars such as Xyl and Ara, although this drawback can be overcome by a range of metabolic

engineering strategies [21, 22]. High concentrations of GalA in hydrolysates of pectin-rich

feedstocks cannot be fermented either. These findings, together with the high pentose:hexose

ratio (2.7:1) determined in sudangrass genotypes and the small amounts of GalA detected in

the accessions (Fig 3), indicate that sudangrass biomass could be used for ethanolic fermenta-

tion. In this respect, the usage of the enriched-pentose accessions (R.S 2199 Sudanense, R.S

2198 Sudanense, and R.S 1370 Syn4) as feedstocks for alcoholic fermentation by engineered

pentose-fermenting S. cerevisiae strains would be simplified and favored because these acces-

sions contain low levels of GalA. In such case, the pretreatment should allow the recovery of

the sugars derived from hemicelluloses.

The plant cell wall is a complex network of different polysaccharides that changes during

plant development and in response to stress [23]. In the cell walls of the 5th internodes of stems

from sudangrass accessions the comparison of the composition in monosaccharides and arabi-

noxylans between susceptible and resistant genotypes to abiotic and biotic stresses exhibited

differential responses. The most susceptible genotype to both frost and bacterioses (R.S 2199

Sudanense) had higher content of Ara, Xyl, Gal, Glu, and arabinoxylans in comparison to the

most resistant ones (Figs 3 and 5), suggesting that the differences previously observed between

genotypes might be mainly attributed to the hemicellulose polymers. This preliminary data is

in accordance with the significantly lower percentages of Xyl and arabinoxylans detected in

spikes of the Fusarium head blight resistant wheat 02-5B-318 in comparison with the sensitive

genotype Saragolla; although, significantly higher percentage of Ara, Gal and Glu was deter-

mined in the resistant line compared to the susceptible one [24].

Several abiotic and biotic stresses have been associated with compositional changes in the

cell wall. Arabinoxylan influenced disease resistance of barley against the powdery mildew fun-

gus Blumeria graminis f. sp. hordei indicating that in monocots this hemicellulose is important

in response to fungal infection [25]. The comparison of the cell wall in three wheat cultivars

with different levels of tolerance to heat and drought exhibited an increase in arabinoxylan in

all cultivars under both stress conditions [26].

Atkinson and Urwin (2012) [27] found evidence that plant responses to multiple environ-

mental stresses is different from the response to individual stress factors. This is important

considering that all field-grown sudangrass accessions were subject to multiple stresses. In this

respect, a correlation between different cell wall characteristics and response to various envi-

ronmental stresses needs to be examined in future studies. Cell wall analyses in stems of sudan-

grass accessions demonstrated significant variability in content of soluble extractives,

monosaccharides, elemental composition, and stress responses, further enhancing the rele-

vance of characterizing germplasm collections for bioenergy purposes.
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Writing – original draft: Alberto Acevedo.

Writing – review & editing: Alberto Acevedo, Leonardo D. Gómez.
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