54 research outputs found

    Dynamic variation of CD5 surface expression levels within individual chronic lymphocytic leukemia clones.

    Get PDF
    Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of clonally derived mature CD5high B cells; however, the cellular origin of CLL is still unknown. Patients with CLL also harbor variable numbers of CD5low B cells, but the clonal relationship of these cells to the bulk disease is unknown and can have important implications for monitoring, treating, and understanding the biology of CLL. Here, we use B-cell receptors (BCRs) as molecular barcodes to first show by single-cell BCR sequencing that the great majority of CD5low B cells in the blood of CLL patients are clonally related to CD5high CLL B cells. We investigate whether CD5 state switching was likely to occur continuously as a common event or as a rare event in CLL by tracking somatic BCR mutations in bulk CLL B cells and using them to reconstruct the phylogenetic relationships and evolutionary history of the CLL in four patients. Using statistical methods, we show that there is no parsimonious route from a single or low number of CD5low switch events to the CD5high population, but rather, large-scale and/or dynamic switching between these CD5 states is the most likely explanation. The overlapping BCR repertoires between CD5high and CD5low cells from CLL patient peripheral blood reveal that CLL exists in a continuum of CD5 expression. The major proportion of CD5low B cells in patients are leukemic, thus identifying CD5low B cells as an important component of CLL, with implications for CLL pathogenesis, clinical monitoring, and the development of anti-CD5-directed therapies

    Predicting the risk of pancreatic cancer in adults with new-onset diabetes: development and internal–external validation of a clinical risk prediction model

    Get PDF
    Background: The National Institute for Health and Care Excellence (NICE) recommends that people aged 60+ years with newly diagnosed diabetes and weight loss undergo abdominal imaging to assess for pancreatic cancer. More nuanced stratification could lead to enrichment of these referral pathways. Methods: Population-based cohort study of adults aged 30–85 years at type 2 diabetes diagnosis (2010–2021) using the QResearch primary care database in England linked to secondary care data, the national cancer registry and mortality registers. Clinical prediction models were developed to estimate risks of pancreatic cancer diagnosis within 2 years and evaluated using internal–external cross-validation. Results: Seven hundred and sixty-seven of 253,766 individuals were diagnosed with pancreatic cancer within 2 years. Models included age, sex, BMI, prior venous thromboembolism, digoxin prescription, HbA1c, ALT, creatinine, haemoglobin, platelet count; and the presence of abdominal pain, weight loss, jaundice, heartburn, indigestion or nausea (previous 6 months). The Cox model had the highest discrimination (Harrell’s C-index 0.802 (95% CI: 0.797–0.817)), the highest clinical utility, and was well calibrated. The model’s highest 1% of predicted risks captured 12.51% of pancreatic cancer cases. NICE guidance had 3.95% sensitivity. Discussion: A new prediction model could have clinical utility in identifying individuals with recent onset diabetes suitable for fast-track abdominal imaging

    Temporality of body mass index, blood tests, comorbidities and medication use as early markers for pancreatic ductal adenocarcinoma (PDAC): a nested case–control study

    Get PDF
    Objective Prior studies identified clinical factors associated with increased risk of pancreatic ductal adenocarcinoma (PDAC). However, little is known regarding their time-varying nature, which could inform earlier diagnosis. This study assessed temporality of body mass index (BMI), blood-based markers, comorbidities and medication use with PDAC risk .Design We performed a population-based nested case–control study of 28 137 PDAC cases and 261 219 matched-controls in England. We described the associations of biomarkers with risk of PDAC using fractional polynomials and 5-year time trends using joinpoint regression. Associations with comorbidities and medication use were evaluated using conditional logistic regression.Results Risk of PDAC increased with raised HbA1c, liver markers, white blood cell and platelets, while following a U-shaped relationship for BMI and haemoglobin. Five-year trends showed biphasic BMI decrease and HbA1c increase prior to PDAC; early-gradual changes 2–3 years prior, followed by late-rapid changes 1–2 years prior. Liver markers and blood counts (white blood cell, platelets) showed monophasic rapid-increase approximately 1 year prior. Recent diagnosis of pancreatic cyst, pancreatitis, type 2 diabetes and initiation of certain glucose-lowering and acid-regulating therapies were associated with highest risk of PDAC.Conclusion Risk of PDAC increased with raised HbA1c, liver markers, white blood cell and platelets, while followed a U-shaped relationship for BMI and haemoglobin. BMI and HbA1c derange biphasically approximately 3 years prior while liver markers and blood counts (white blood cell, platelets) derange monophasically approximately 1 year prior to PDAC. Profiling these in combination with their temporality could inform earlier PDAC diagnosis

    Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures.

    Get PDF
    Despite the conventional view that a truly random V(D)J recombination process should generate a highly diverse immune repertoire, emerging reports suggest that there is a certain bias toward the generation of shared/public immune receptor chains. These studies were performed in viral diseases where public T cell receptors (TCR) appear to confer better protective responses. Selective pressures generating common TCR clonotypes are currently not well understood, but it is believed that they confer a growth advantage. As very little is known about public TCR clonotypes in cancer, here we set out to determine the extent of shared TCR clonotypes in the intra-tumor microenvironments of virus- and non-virus-driven head and neck cancers using TCR sequencing. We report that tumor-infiltrating T cell clonotypes were indeed shared across individuals with the same cancer type, where the majority of shared sequences were specific to the cancer type (i.e., viral versus non-viral). These shared clonotypes were not particularly enriched in EBV-associated nasopharynx cancer but, in both cancers, exhibited distinct characteristics, namely shorter CDR3 lengths, restricted V- and J-gene usages, and also demonstrated convergent V(D)J recombination. Many of these shared TCRs were expressed in patients with a shared HLA background. Pattern recognition of CDR3 amino acid sequences revealed strong convergence to specific pattern motifs, and these motifs were uniquely found to each cancer type. This suggests that they may be enriched for specificity to common antigens found in the tumor microenvironment of different cancers. The identification of shared TCRs in infiltrating tumor T cells not only adds to our understanding of the tumor-adaptive immune recognition but could also serve as disease-specific biomarkers and guide the development of future immunotherapies

    Pre/pro-B cells generate macrophage populations during homeostasis and inflammation

    Get PDF
    Most tissue-resident macrophages (Mφs) are believed to be derived prenatally and are assumed to maintain themselves throughout life by self-proliferation. However, in adult mice we identified a progenitor within bone marrow, early pro-B cell/fraction B, that differentiates into tissue Mφs. These Mφ precursors have non-rearranged B-cell receptor genes and coexpress myeloid (GR1, CD11b, and CD16/32) and lymphoid (B220 and CD19) lineage markers. During steady state, these precursors exit bone marrow, losing Gr1, and enter the systemic circulation, seeding the gastrointestinal system as well as pleural and peritoneal cavities but not the brain. While in these tissues, they acquire a transcriptome identical to embryonically derived tissue-resident Mφs. Similarly, these Mφ precursors also enter sites of inflammation, gaining CD115, F4/80, and CD16/32, and become indistinguishable from blood monocyte-derived Mφs. Thus, we have identified a population of cells within the bone marrow early pro-B cell compartment that possess functional plasticity to differentiate into either tissue-resident or inflammatory Mφs, depending on microenvironmental signals. We propose that these precursors represent an additional source of Mφ populations in adult mice during steady state and inflammation

    The Genomic and Immune Landscapes of Lethal Metastatic Breast Cancer

    Get PDF
    TCR repertoire; Breast cancer; Clade mutationsRepertori TCR; Càncer de mama; Mutacions cladeRepertorio TCR; Cáncer de mama; Mutaciones cladoThe detailed molecular characterization of lethal cancers is a prerequisite to understanding resistance to therapy and escape from cancer immunoediting. We performed extensive multi-platform profiling of multi-regional metastases in autopsies from 10 patients with therapy-resistant breast cancer. The integrated genomic and immune landscapes show that metastases propagate and evolve as communities of clones, reveal their predicted neo-antigen landscapes, and show that they can accumulate HLA loss of heterozygosity (LOH). The data further identify variable tumor microenvironments and reveal, through analyses of T cell receptor repertoires, that adaptive immune responses appear to co-evolve with the metastatic genomes. These findings reveal in fine detail the landscapes of lethal metastatic breast cancer

    Epstein-Barr virus nuclear protein EBNA3C directly induces expression of AID and somatic mutations in B cells

    Get PDF
    Activation-induced cytidine deaminase (AID), the enzyme responsible for induction of sequence variation in immunoglobulins (Igs) during the process of somatic hypermutation (SHM) and also Ig class switching, can have a potent mutator phenotype in the development of lymphoma. Using various Epstein-Barr virus (EBV) recombinants, we provide definitive evidence that the viral nuclear protein EBNA3C is essential in EBV-infected primary B cells for the induction of AID mRNA and protein. Using lymphoblastoid cell lines (LCLs) established with EBV recombinants conditional for EBNA3C function, this was confirmed, and it was shown that transactivation of the AID gene (AICDA) is associated with EBNA3C binding to highly conserved regulatory elements located proximal to and upstream of the AICDA transcription start site. EBNA3C binding initiated epigenetic changes to chromatin at specific sites across the AICDA locus. Deep sequencing of cDNA corresponding to the IgH V-D-J region from the conditional LCL was used to formally show that SHM is activated by functional EBNA3C and induction of AID. These data, showing the direct targeting and induction of functional AID by EBNA3C, suggest a novel role for EBV in the etiology of B cell cancers, including endemic Burkitt lymphoma

    Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures.

    Get PDF
    Deep sequencing of B cell receptor (BCR) heavy chains from a cohort of 31 COVID-19 patients from the UK reveals a stereotypical naive immune response to SARS-CoV-2 which is consistent across patients. Clonal expansion of the B cell population is also observed and may be the result of memory bystander effects. There was a strong convergent sequence signature across patients, and we identified 1,254 clonotypes convergent between at least four of the COVID-19 patients, but not present in healthy controls or individuals following seasonal influenza vaccination. A subset of the convergent clonotypes were homologous to known SARS and SARS-CoV-2 spike protein neutralizing antibodies. Convergence was also demonstrated across wide geographies by comparison of data sets between patients from UK, USA, and China, further validating the disease association and consistency of the stereotypical immune response even at the sequence level. These convergent clonotypes provide a resource to identify potential therapeutic and prophylactic antibodies and demonstrate the potential of BCR profiling as a tool to help understand patient responses

    Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1

    Get PDF
    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols
    corecore