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SUMMARY

The detailed molecular characterization of lethal
cancers is a prerequisite to understanding resis-
tance to therapy and escape from cancer immunoe-
diting. We performed extensive multi-platform
profiling of multi-regional metastases in autopsies
from 10 patients with therapy-resistant breast can-
cer. The integrated genomic and immune land-
scapes show that metastases propagate and evolve
as communities of clones, reveal their predicted
neo-antigen landscapes, and show that they can
accumulate HLA loss of heterozygosity (LOH). The
data further identify variable tumor microenviron-
ments and reveal, through analyses of T cell recep-
tor repertoires, that adaptive immune responses
appear to co-evolve with the metastatic genomes.
These findings reveal in fine detail the landscapes
of lethal metastatic breast cancer.
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INTRODUCTION

The genomic characterization of large numbers of primary breast

tumors has revealed significant inter-tumor heterogeneity and

unraveled an increasingly refined molecular taxonomy of early

breast cancer with profound implications for prognostication

and therapeutic stratification (Cancer GenomeAtlas, 2012; Curtis

et al., 2012; Dvinge et al., 2013; Nik-Zainal et al., 2012a, 2012b,

2016). Intra-tumor genomic heterogeneity is also seen in early

breast cancers, highlighting that complex clonal architectures

are already present in primary tumors (Nik-Zainal et al., 2016;

Pereira et al., 2016; Shah et al., 2012; Yates et al., 2015). The

tumor microenvironment (TME) in primary tumors is also different

and distinctive across breast cancer subtypes, in particular with

regards to adaptive immunity (Ali et al., 2016a; Rooney et al.,

2015). The nature of the adaptive immune response, the status

of immunoediting, and the diversity of the T cell receptor (TCR)

repertoire have been analyzed in some early breast cancers

(Munson et al., 2016; Park et al., 2016; Wang et al., 2017), but

such information for metastatic lesions is lacking.
.
commons.org/licenses/by/4.0/).
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Large-scale studies reporting the genomic and transcriptomic

characterization of breast cancer metastasis (Robinson et al.,

2013) and whole-genome sequencing of matched primary tu-

mors and metastases (Yates et al., 2017) have identified targets

that are enriched in metastases compared with primary tumors.

Despite their size, these studies were generally limited to single

metastatic samples.

Genomic evolution is seen in breast cancer metastases

compared with their matched primary tumors. This was first re-

ported in single cases (Shah et al., 2009; Ding et al., 2010). A

couple of warm autopsy case reports have also revealed hetero-

geneity of genomic resistancemechanisms to targeted therapies

across metastases (Juric et al., 2015; Murtaza et al., 2015). More

recently two small autopsy studies with multiple-metastases

profiling have confirmed significant inter-metastasis heteroge-

neity (Hoadley et al., 2016; Savas et al., 2016).

However, a comprehensive molecular analysis of lethal breast

cancers, interrogatingboth themalignant andTMEcompartments

and TCR repertoires, acrossmultiple metastases in several cases

is still lacking. Here we report extensive multi-platform molecular

profiling (DNA sequencing, RNA sequencing, TCR sequencing,

digital pathology of H&E sections, and immunohistochemistry) of

multiple individualmetastases from10warmautopsies of patients

with lethal multi-therapy-resistant breast cancers. This collection

allowed us to characterize the mutational and copy number aber-

ration (CNA) landscapes across the individual metastasis to infer

the clonal ancestries of metastases, assess the TME in each indi-

vidual metastasis, characterize the predicted neo-antigens, and

assess the TCR repertoires across metastases, providing a

detailed molecular characterization of lethal breast cancers that

had been subjected to multiple lines of systemic therapies.

RESULTS

Multi-site Genomic and Transcriptomic Landscapes of
Lethal Metastatic Breast Cancers
We performed warm autopsies in 10 patients with metastatic

breast cancer that had become resistant to multiple lines of ther-

apy (Figure 1A; Figure S1). The cohort is fairly representative of

the major subtypes: 8 were diagnosed with estrogen receptor

(ER)-positive disease, and three of these were HER2-positive;

one was ER-negative and HER2-positive; and one was triple-

negative. In total, 181 samples from multiple metastatic sites in

each patient (mean, 18.5/patient; range, 5–37) were collected

and either fresh-frozen (for DNA and RNA extraction) or

formalin-fixed and paraffin-embedded (FFPE). FFPE samples

from the original breast surgery or diagnostic biopsy were avail-

able from 6 of the patients, and metastatic biopsies during treat-

ment were also collected from 3 patients. The FFPE samples

were used for histological and immunohistochemistry analysis

and for DNA extraction. Plasma samples and a selection of

body fluids, collected during the patient’s life or at autopsy,

were available from all 10 patients (mean, 4.7/patient; range,

1–9/patient) and used for cell-free DNA (cfDNA) extraction.

Comprehensive clinical information for the patients and analyzed

samples can be found in Table S1.

The genomic landscapes of breast cancers are dominated by

CNAs (Ciriello et al., 2013). We used shallow whole-genome
sequencing (sWGS) to obtain CNA profiles in 168 samples

from the 10 cases: 122 tumor biopsies (109 metastasis at

autopsy, 4 metastatic biopsies during treatment, 8 primary

breast surgical or diagnostic biopsy specimens from 6 cases,

and a nasopharyngeal olfactory neuroblastoma) and 46 body

fluid samples (24 plasma samples, 5 ascites samples, 9 cerebro-

spinal fluid [CSF] samples, 7 pleural fluid samples, and 1 pericar-

dial fluid sample) (Table S1). For 64 of these metastatic samples

(from 9 of the 10 cases), we also performed RNA sequencing

(RNA-seq). The combined sWGS and RNA-seq data were used

to classify individual metastasis into one of the 10 genome

driver-based subtypes, called integrative clusters (IntClust) (Ali

et al., 2014; Curtis et al., 2012).

The tumor CNA profiles were remarkably similar acrossmetas-

tases in 9 of the 10 cases, and, as expected, all metastases were

classified into the same IntClust (Figure 1B; SI1 in https://doi.org/

10.17632/6cv77bry6m.1). An exception was case 288, an ER-

positive lobular breast cancer, where, besides a 1q gain and

16q lossseen inallmetastases, therewereadditionalandmutually

exclusive CNAs: amplification of 11q13/14, includingCCND1 and

PAK1, in lymph nodes (288-005 and 288-006), the ascites fluid

cell pellet, and ovaries (classified as IntClust2) and 8q and 10q

amplifications in brain and lung and pleura (classified as

IntClust10). Thesedata suggest that allmetastases sharedacom-

monancestorwith 1qgain and16q loss, andearly sub-clonal evo-

lution with remarkable genomic divergence then occurred. The

PAM50 intrinsic subtypes (Parkeret al., 2009)were lessconsistent

across metastases and failed to capture the clade segregation in

case 288 (SI1 in https://doi.org/10.17632/6cv77bry6m.1).

We used whole-exome sequencing (WES) at a median of

1323 depth, including, in each case, DNA extracted from the

buffy coat as the matched germline reference to characterize

the somatic mutational landscape across 79 metastases and 7

body fluid samples, with a range of 2 to 19 metastatic samples

per patient sequenced. We analyzed theWES data with rigorous

filters (STAR Methods) based on a recently described pipeline

(Callari et al., 2017). To further validate the WES mutation calls

(Table S2), we generated ultra-deep targeted sequencing (TS)

(mean depth of 7,570�29,8913; mean coverage > 1,0003 for

71%–100% of samples) for amplicons across 464 mutations

(average, 46.4/case; range, 16–127) (Table S3). Matched WES

and TS data were available from 79 samples, and they validated

the robustness of theWES data analysis pipeline we used: sensi-

tivity, 0.85; specificity, 0.99; accuracy, 0.91; precision, 0.99

(STAR Methods).

The WES data identified 15,430 somatic mutations across the

86 samples: 7,809 missense, 1258 truncating, 10 nonstop, 234

in-frame deletions or insertions, and 6,119 other (Table S2).

The mutation burden varied between cases, with a median of

507 mutations per case (range, 113–997), and across metasta-

ses within each case, with a median mutation load of 146 per

metastasis (interquartile range, 86.25). These numbers are

significantly greater (p % 2.2e�16, Wilcoxon rank-sum test)

than mutation burdens reported previously for primary breast

tumors within The Cancer Genome Atlas (TCGA), with a median

mutation load of 63.5 (interquartile range, 68).

We classified somatic mutations found in WES as ‘‘metastatic

stem’’ when present in all metastases from the same case,
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Figure 1. Molecular Profiling of 10 Lethal Metastatic Breast Cancers

(A) Silhouettes representing the 10 patients with number and type of samples profiled using each platform. Patients are grouped as indicated above the

silhouettes according to ER and HER2 status. Samples profiled are labeled according to the color key panel on the right. WES, whole-exome sequencing; sWGS,

shallow whole-genome sequencing; TS, targeted sequencing; RNA-seq, RNA sequencing; RNA-TCRseq, targeted TCR sequencing in RNA; IHC, immunohis-

tochemistry; TNBC, triple-negative breast cancer.

(B) IGV plot showing the copy number aberration (CNA) landscapes across 168 metastases, with samples grouped by patient. The IntClust bar shows

individual sample assignment to one of the 10 integrative clusters (Curtis et al., 2012). Copy number gains and amplifications are indicated in shades of

red; copy number losses are indicated in shades of blue (see bar for corresponding Log ratio). IntClust as per color bar. NC- not classified; ON- olfactory

neuroblastoma.
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Figure 2. Mutational Landscape of 10 Lethal Metastatic Breast Cancers

(A)Mutational burden barplots across 86metastatic samples usingWES.Colors indicatemutations classified asmetastatic stem,metastatic clade, andmetastatic

private.

(B) Oncoprint plot showing the mutations in breast cancer driver genes identified by WES across 84 metastases for the 10 patients.

(legend continued on next page)
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‘‘metastatic clade’’ when present in at least two but not all metas-

tases, and ‘‘metastatic private’’ when present in a single metas-

tasis (Figure 2A). This revealed that the vast majority of the

mutations in individual metastasis were either stem or clade.

We focused our analysis on mutation drivers (Table S4). We

considered a gene a mutation driver (e.g., associated with a

fitness advantage when somatically mutated) using the widely

accepted framework that is based on analyses of large cancer

mutation datasets (Lawrence et al., 2013; Vogelstein et al.,

2013). For our analyses, we defined a list of 109 breast cancer

driver genes identified from reviewing the data in three large

cohorts (Lefebvre et al., 2016; Nik-Zainal et al., 2016; Pereira

et al., 2016) and a list of 527 non-breast cancer drivers (non-over-

lapping) from theCancerGeneCensus (https://cancer.sanger.ac.

uk/census). Mutations were significantly (p = 0.0002, chi-square

test) more common in breast cancer driver genes (58 of 109,

53.21%) than in non-breast cancer driver genes (142 of 527,

26.94%). The total number of driver mutations per metastasis

averaged 11.44 (range, 2–30) (Figure 2B; Figure S2), which is

higher than the estimated number per primary tumor (Martincor-

ena et al., 2017). Metastatic stemdrivermutationswere identified

in all 10 cases: 2 in case288 (CDH1; non-breast driver:CALR), 9 in

case 290 (BUB1B,MAP2K4,MAP3K1,NCOR1, TBX3, and TP53;

non-breastdrivers:ELL,MET, andFLT3), 1 in case291 (ERBB3), 3

in case 308 (ESR1 and PTEN; non-breast driver: NKX2-1), 4 in

case 315 (ATM and GATA3, one missense and one truncating;

non-breast driver: CDC73), 5 in case 323 (CDH1 and PTEN;

non-breast drivers: MET, MYCL, and SDC4), 1 in case DET52

(ATM), 8 in case 328 (FGFR2, NOTCH1, and TP53; non-breast

drivers: AXIN1, CRTC1, LRIG3, SMARCE1, andWHSC1L1), and

5 in case 330 (TP53; non-breast drivers: CARD11, CNTRL,

FBXO11, and PTPRK). A Li-Fraumeni syndrome patient, case

298, had two known metastasized malignancies: HER2-positive

breast cancer and olfactory neuroblastoma. Previously, we

showed that the brain metastasis originated from the breast can-

cer (De Mattos-Arruda et al., 2015). The HER2-amplified brain

metastases had 5 mutation drivers (non-breast drivers:

CACNA1D, DCTN1, FAT1, RAD21, and WHSC1) in addition to

the germline TP53 mutation with associated somatic loss of

heterozygosity. The WES data also revealed that the olfactory

neuroblastoma had anRB1 stemdrivermutation. ThisRB1muta-

tion was detected in one of the two breast cancer brain metasta-

ses (298-009), likely because of contamination by CSF cfDNA.

Indeed, mutations arising from both leptomeningeal neuroblas-

toma and from HER2-positive brain metastases had been de-

tected in CSF cfDNA (De Mattos-Arruda et al., 2015). In case

290, an ovarian tumor sample originally presumed to bemetasta-

tic lacked all 6 breast cancer stem mutations, including a TP53

frameshift mutation. The sample had a different TP53 p.Y220D

missensemutation, and this prompted a pathology review, which

confirmed that it was an independent primary ovarian adenocar-

cinoma. Most cases had also several metastatic clade driver
(C) Oncoprint plot showing driver mutations validated by TS (allelic fraction [AF]

(D) Boxplot showing the percentage of stem and clade mutations identified as pr

FFPE blocks from primary surgery samples, except for case DET52, where P1 a

(E) Boxplots of Z score-normalized mutant allele expression from RNA-seq data

transcripts per million. Bars indicate significance of difference (p values < 0.05 a
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mutations, whereas metastatic private driver mutations were

uncommon.

TS data were also obtained from 40 additional samples for

which only FFPE blocks were available, bringing the total number

of metastatic samples, primary tumors, and liquid biopsies with

TS data to 159 (average per patient, 16 samples; range, 4–25).

The TS validated and extended the WES findings, and this was

particularly informative in case 288, showing that the bilateral

ovarian metastases shared the driver mutations with the lymph

nodes and ascites (Figure 2C; SI2 in https://doi.org/10.17632/

6cv77bry6m.1). In 6 cases, FFPE blocks from the original primary

breast tumor were available, and TS data confirmed that all of

these contained the clonal ancestors of the metastases, but a

percentage of stemmutations and an even larger fraction of clade

mutations were not detected (Figure 2D; SI2 in https://doi.org/10.

17632/6cv77bry6m.1). This included some metastatic stem

driver mutations (case 290, BUB1B absent in two FFPE blocks;

case 308, ESR1 and PTEN absent in the two FFPE blocks;

DET52, ATM not detected in ductal carcinoma in situ (DCIS) or

metastatic axillary lymph nodes) andmostmetastatic clade driver

mutations (SI2 in https://doi.org/10.17632/6cv77bry6m.1).

We next asked whether the expression of the mutant allele

was similar across mutations. A combined analysis of WES

and RNA-seq data were possible in 8 cases (case 291 with a sin-

gle metastasis with combined data and case DET52 without

RNA-seq data were excluded) and revealed that the normalized

expression of the mutant allele was highest in stem, lower in

clade, and lowest in private mutations (Figure 2E).

In summary, metastases keep accumulating mutations,

including mutations in known cancer driver genes, but an

apparent hierarchy of expression (stem-clade-private) of mutant

alleles suggests that, as more mutations accumulate in metasta-

ses, these are increasingly passengers (e.g., not expressed).

A fraction of mutations (including drivers) shared across metas-

tases (stem and clade) were not detectable in the available

primary tumor tissue blocks, suggesting either their origin from

aminor clone in the primary tumor or their acquisition inmetasta-

tic cells that had already left the breast.

Metastases Are Initiated and Maintained as
Communities of Clones
Amonoclonal origin of metastases should result in uniformly high

variant allelic fractions (VAFs) of stem and clade mutations

across all metastases in a case. Plots of allelic fractions of these

mutations across individual metastases revealed a scatter of

allelic fractions using WES data (Figure 3A), and this was vali-

dated using deep TS data. This observation was confirmed by

calculating the cancer cell fraction (CCF), which is the VAF of

each somatic mutation corrected for copy number and purity

estimates, across all of the individual metastases. The probability

distributions of theCCFswere then used to classify each somatic

mutation as clonal or sub-clonal (McGranahan et al., 2015;
R 0.1%) for case 288.

esent by TS (AF R 3 SD from AF in matched normal). DNA was extracted from

nd P3 were diagnostic biopsies (breast and axillary lymph node, respectively).

in metastatic stem, metastatic clade, and metastatic private mutations. TPM,

re considered statistically significant).
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Figure 3. Breast Cancer Metastases Are Communities of Clones

(A) Pairwise comparisons of raw VAFs fromWES data across 10 pairs of metastases from case 290. Metastatic stem and metastatic clade mutations are colored

as indicated.

(B) Cancer cell fraction (from WES data) of metastatic stem and metastatic clade mutations across metastases in case 290. Each symbol represents a somatic

mutation in an individual metastasis. Probability distributions of the CCFs were used to classify each mutation as either clonal (blue) or subclonal (red). Error bars

represent the 95% confidence interval. Plots for all remainder cases are shown in SI3 in https://doi.org/10.17632/6cv77bry6m.1.

(C) Mean cellular prevalence of mutation clusters identified by PyClone fromWES data across metastases in case 290. Metastatic stem (clusters 6, 9, 10, and 15)

and metastatic clade (clusters 2, 5, 7, 8, 11, 13, and 14) mutation clusters are shown.

(D) Boxplots showing the distribution of mutation AFs in TS data in case 290. Amplicons representative of PyClone exome-derived mutation clusters were

analyzed. Plots for all remainder cases are shown in SI3 in https://doi.org/10.17632/6cv77bry6m.1.

Cell Reports 27, 2690–2708, May 28, 2019 2695

https://doi.org/10.17632/6cv77bry6m.1
https://doi.org/10.17632/6cv77bry6m.1


(legend on next page)

2696 Cell Reports 27, 2690–2708, May 28, 2019



Figures 3B andS3; https://doi.org/10.17632/6cv77bry6m.1), and

the results were consistent with a fraction of the metastatic stem

and clade mutations being sub-clonal.

We also analyzed the WES data with PyClone (Roth et al.,

2014), a Bayesian clustering method for grouping sets of somatic

mutations and estimating their cellular prevalence (Figure 3C; Fig-

ure S3; SI3 in https://doi.org/10.17632/6cv77bry6m.1). In each

case, a cluster constituted by metastatic stem mutations had

the highest predicted cellular prevalence (mean, 0.94; range,

0.81–0.99) across metastases, as would be expected (288, clus-

ter 2; 290, cluster 6; 308, cluster 1; 315, cluster 3; 323, cluster 2;

328, cluster 4; 330, cluster 5; Det52, cluster 1). However, there

were also stem mutation clusters with lower predicted cellular

prevalence, indicating that these were probably sub-clonal (290:

clusters 9, 10, and 15; 308: clusters 5 and 9; 328: cluster 5; 330:

cluster 6; Det52: cluster 6). Amplicons representative of the clonal

clusters identified from WES were validated using TS, and

this confirmed that a fraction of stem and clade mutations ap-

peared to be sub-clonal (Figure 3D; SI3 in https://doi.org/10.

17632/6cv77bry6m.1).

In summary, these analyses are not compatible with all meta-

static stem and clade mutations being clonal and support the

hypothesis that metastases are initiated and maintained as

groups of cellular clones.

Ancestries of Multiregional Metastases Defined by
Phylogenetic Analyses
We aimed to reconstruct the metastatic seeding patterns with a

series of phylogenetic methods. These included OncoNEM

(Ross and Markowetz, 2016) and Treeomics (Reiter et al.,

2017), which employ nucleotide substitutions and short inser-

tions and deletions (from WES or TS data) as input data; Super-

Freq (Savas et al., 2016), which employs both single-nucleotide

variants (SNVs) and CNAs fromWES as input data; andMEDICC

(Schwarz et al., 2014), which employs CNAs from sWGS and

WES data as input (STAR Methods). Overall, the results were

consistent across these different methods, but for clarity, we

present below the results from OncoNEM (Figure 4; Figure S4A)

using either WES and/or TS data (all other results are provided in

SI4 in https://doi.org/10.17632/6cv77bry6m.1). The OncoNEM

phylogenetic trees of metastases had branched structures in

nine cases (Figure 4; Figure S4A; SI4 in https://doi.org/10.

17632/6cv77bry6m.1). These trees had a limited number of

main branches forming separate clades of distinct but geneti-

cally related, by common ancestry, metastatic samples. The

exception was case 291, where all metastases appeared linearly

related using TS data (Figure S4A; SI4 in https://doi.org/10.

17632/6cv77bry6m.1), but this appearance could be an artifact
Figure 4. Phylogenetic Ancestries of Breast Cancer Metastases

(A–D) Phylogenetic trees from the OncoNEM algorithm. Shown are cases 288 (A

metastatic clade mutations are shown. Boxes identify clades. Tree branches are

(E) Phylogenetic tree from the LICHeE algorithm for case 290. Circles represent th

for each cluster. Squares represent each individual metastasis, with colored re

Cross-seeding from the KMT2A clade to 3 metastases (014, 016-A, and 016-B-W

are shown in SI4 in https://doi.org/10.17632/6cv77bry6m.1.

(F) Mutation barplots colored according to mutational signatures for cases 288 a

Case 298: all mutations across samples (left panel) and private mutations of Her
resulting from high-quality WES being available from a single

metastasis (291-015). In case 298, there were two breast cancer

metastases analyzed, with the remainder of metastases

sequenced from neuroblastoma, and metastases segregated

by tumor of origin (Figure S4). Case 288 was an ER-positive

lobular cancer with a classical somatic truncating CDH1 muta-

tion (Figure 4A). This patient had bone metastases 10 years after

diagnosis, followed by contralateral axillary lymph node metas-

tases and, later, lung and CNS metastases. The metastases

detected clinically were sampled at autopsy and, in addition,

metastases found at autopsy in both ovaries and the uterus,

and ascites was also collected. The genomic phylogeny was

clear, with two separate clades: one consisting of lymph nodes

(288-005 and -006), ascites (288-022), and bilateral ovarian Kru-

kenberg metastases (13A-0267A10, -A26, and -A27) that were

all ER-positive and had a truncating KMT2C R3868Kfs*13 muta-

tion and 11q13 amplification and a second clade with brain (288-

008), leptomeningeal (CSF pellet, 288-023), and lungmetastases

(288-016, -017, -020, and -021) that were ER-negative, shared

TP53, MAP3K1, and ARID5B mutations, and lacked KMT2C-

R3868Kfs*13 (Figure 4A). Case 290 (Figure 4B), an ER-positive/

HER2� ductal cancer, relapsed with bone metastases 2 years

after diagnosis, followed by liver metastases 13 years later and

death shortly after development of CNS metastases 20 years

after the original diagnosis. At autopsy, several liver metastases

were sampled and carefully mapped, in addition to brain and

stomach metastases being collected. The ovarian sample

collected at autopsy was proven genomically and upon histolog-

ical review to be a separate primary adenocarcinoma (see

above). The genomic phylogeny of the breast cancer metastases

revealed 3 clades. One clade, defined by the presence of an

ESR1 Y537S mutation, in ER-positive metastases (290-014,

-015, -016A, -016B, and -021) mapped to the right inferior lobe

of the liver. A second clade of ER-negative metastases in the

brain (290-005, -007, and -008) and left (290-018 and -019)

and upper right (290-017) lobes of the liver was defined by the

presence of a KMT2A mutation. A third clade was defined by

the absence of both ESR1 and KMT2A mutations in a stomach

metastasis (290-024). Case 308 (Figure 4C), an ER-positive/

HER2� ductal cancer, relapsed with bone metastases 3 years

after surgery, followed 3 years later by lung metastases and

then, in quick succession, CNS and liver metastases and amedi-

astinal mass (formed by pericardial, lung, and rib metastases)

developing in the year prior to death. All 19 metastases analyzed

byWES shared activating ESR1 and truncating PTENmutations.

A genomic clade was defined by a PIK3CA mutation, shared by

pericardial (308-015, -016, and -017) and bonemetastases (308-

018, -019, -020, -021, and -022) forming the mediastinal mass.
), 290 (B), 308 (C), and 315 (D). Metastatic stem driver mutations and selected

proportional to the number of mutations.

e mutation clonal clusters and digits within each circle the number of mutations

ctangles representing the cellular prevalence of the respective clonal cluster.

T/muc/IDC) in the ESR1 clade can be seen. Similar plots for all remainder cases

nd 298. Case 288: all mutations (left panel) and clade mutations (right panel).

2+ breast cancer metastases (right panel).
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Most of the remainder of the metastases (except 3 of the menin-

geal metastases: 308-001, -002, and -003) formed a separate

clade defined by a BRCA2 missense mutation. Case 315 (Fig-

ure 4D), an ER-positive/HER2+ ductal cancer treated with neo-

adjuvant chemotherapy and anti-HER2 therapy followed by

surgery, relapsed 3 years after diagnosis with bone and liver

metastases, received multiple lines of therapy mostly targeting

HER2, and within 1 year of death (8 years after diagnosis) had

progressive liver and CNS metastases. At autopsy, all 12 metas-

tases analyzed by WES shared ATM and two different GATA3

mutations. Two genomic clades were identified: one defined by

a truncating mutation in PPP2R1A, comprised of metastases in

the liver (315-001, and -003), peri-pancreatic lymph node (315-

015), para-tracheal lymph nodes (315-007 and -014), and

meninges (315-017 and -018) and a second clade defined by

an ESRRB mutation in liver (315-002, -004, and -005) and lung

(315-009 and -012) metastases. Case 323 (Figure S4A; SI4 in

https://doi.org/10.17632/6cv77bry6m.1), an ER-positive/HER2�
lobular cancer, relapsed 2 years after diagnosis with metastases

in bone, pleurae, and lymph nodes. The patient died a year later

with CNS involvement. Genomic phylogeny showed that the two

lymph node metastases formed a single clade with CDH1 and

PTEN stem mutations. Case 328 (Figure S4A), an ER-negative/

HER2+ ductal carcinoma, presented with breast primary and

metastatic disease in the liver, and the patient died 19 months

later. At autopsy, three anatomically distinct brain metastases

were sampled; all shared TP53 and FGFR2mutations and formed

a single clade. Case 330 (Figure S4A), a triple-negative ductal

cancer, was originally treated with neo-adjuvant chemotherapy,

with pathological complete response at surgery. The patient

relapsed after 12 months with CNSmetastases, followedmonths

later by breast metastases. Phylogenetic analysis revealed two

clades: breast metastases (330-001 and -002) with GPS2,

MSH2, and FSIP2 mutations and brain (330-005) and meningeal

(330-003 and -004) metastases with AR and MLLT4 mutations.

Case DET52 (Figure S4A), an ER-positive/HER2+ ductal carci-

noma, presented with widespread metastatic disease and had

a tree rooted in a single brain metastasis resected surgically

18 months prior to death (Det52, mt4), with a clade formed

by ovary (Det52, mt7), liver (Det52, mt5), and lung (Det52, mt6)

metastases. The OncoNEM tree constructed from TS data (SI4

in https://doi.org/10.17632/6cv77bry6m.1) showed one clade

formed by diagnostic DCIS and axillary lymph node (Det52,

mt2) biopsies and invasive breast cancer sampled at autopsy

(Det52, mt3), and another clade formed by the distal metastases

collected at autopsy (bone, mt8; liver, mt5; ovary, mt7) and the

surgically resected brain metastasis (mt4).

Because metastases were grouped in clades, we asked

whether cross-seeding occurred both within and between

clades. TS data revealed individual instances of cross-seeding

(Table S3; SI2 in https://doi.org/10.17632/6cv77bry6m.1), and

therefore we used a systematic approach to quantify these.

Cross-seeding is the result of a clone (or a group of clones)

from one metastasis recirculating and seeding another metas-

tasis at a different site. We used the PyClone mutation clusters

(see above) as a surrogate of metastatic cellular clones and

entered these into the LICHeE phylogenetic tool (Popic et al.,

2015), which orders clones across samples by comparing their
2698 Cell Reports 27, 2690–2708, May 28, 2019
cellular prevalence. This revealed that cross-seeding between

clades occurs in a particular pattern: a common seeder for one

clade can cross-seed metastases belonging to a separate clade

(Figure 4E; SI4 in https://doi.org/10.17632/6cv77bry6m.1).

Cross-seeding within a clade was rare.

In summary, the genomic phylogenies of metastases are com-

plex but consistently show that, within a patient, individual

metastasis can be grouped in phylogenic clades that share a

common genomic ancestry, and this ancestry is mutually exclu-

sive with the genomic ancestries of other clades. Each clade

group of metastases is therefore likely seeded by a common

ancestor, but cross-seeding between metastases can happen,

although it appears that this occurs to a rather limited degree

and mostly between clades.

Mutational Signatures across Metastases
Mutational signatures, generated by different mutational pro-

cesses, areengraved in thegenomesofbreastcancers (Nik-Zainal

et al., 2016). Toextract these signatures accurately, direct applica-

tion of non-negative matrix factorization (NNMF) on our 86 WES

samples would lack power; hence, data from 240 additional

WES single metastatic breast samples (Lefebvre et al., 2016)

were included in the analysis. To identify canonical signatures,

the rank and number that could be extracted by NNMF were

allowed to vary, and fourwere robustly seen: the APOBEC-related

signatures 2 and 13 (cosine similarity of 0.98 and 0.96, respec-

tively); signature 17, comprising mostly T > G mutations (cosine

similarity of 0.95); and signature 1, associated with demethylation

of cytosines (cosine similarity of 0.91) (Figure 4F; Figure S4B).

We explored whether signatures stratified across stem, clade,

and private mutations. In case 288, considering all mutations re-

vealed signatures 1, 2, and 13 in all metastases and signature

17 only in ER-negative metastases, whereas considering clade

mutations revealed that signature13wasexclusiveof ER-positive

metastases (Figure 4F, top panels). In case 298, signatures 2 and

13 were seen only in Her2+ breast cancer brain metastases, with

enrichment of signature13 inprivatemutations (Figure 4F, bottom

panels). In case 328, signature 17was seen across all 3 brainme-

tastases but restricted to private mutations in only two (SI4 in

https://doi.org/10.17632/6cv77bry6m.1), suggesting enrichment

with later tumorevolution. In caseDET52, a single lungmetastasis

(DET52-mt6)with signature 17 (Figure S4B) carried in that context

the ERBB4 mutation, believed to be the driver of resistance to

lapatinib, which ultimately killed the patient.

The assignment of mutations to the four canonical signatures

revealed a considerable number of ‘‘residual’’ mutations (SI4 in

https://doi.org/10.17632/6cv77bry6m.1). Mathematically small

fluctuations in either direction of these residual mutations may

reflect the lack of power in WES data. However, a consistent

excess of positive residuals indicates that many mutations may

be due to mutational processes previously unaccounted for.

To exclude the possibility that these residual mutations arise

simply because of fitting to fewer canonical signatures than truly

present, the dataset was fitted to the 12 breast cancer-associ-

ated signatures and all 30 canonical signatures in the Catalogue

of Somatic Mutations in Cancer (COSMIC). This revealed

improvement in overall fitting (as expected) at the expense of

increasing negative residuals (p = 4e–16, Wilcoxon signed-rank
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Figure 5. Neo-antigen Landscape across Breast Cancer Metastases

(A) Bar plots of the neo-antigen landscape across cases (top panel) and LOH at the HLA allelic locus across metastases (bottom panel).

(B) Violin plots of observed/expected neoantigen ratios across individual metastases. For each metastasis, 100 replicate expected mutation simulations were

used, and each violin plot shows the distribution of the log2-transformed ratio. The ratio represents the relative deviation of the neo-epitope rate from expectation.
test), suggesting mis-assignment to signatures that are unlikely

to be present. Next, to demonstrate that the excess of residuals

was not simply due to using WES data, the same analysis was

done in 640 WES primary cancers (SI4 in https://doi.org/10.

17632/6cv77bry6m.1). Comparison of residuals (root-mean-

square error [RMSE]) between primary and metastatic samples

revealed that the fitting was much worse for metastatic cancers

(p < 2.2e�16, Wilcoxon rank-sum test). Hence, we hypothesize

that metastases with a longer history of exposure to mutational

processes may carry additional signatures that are detected as

the excess residuals. Indeed, cosine similarities between muta-

tional profiles of metastatic samples and primary samples (with

additional bootstrapping performed 10,0003; median p =

3e�4) revealed greater interpatient similarity in primary versus

metastatic cancers. To further support this finding, we used

the Shannon entropy index to quantify the diversity within the

normalized mutational profile (considering the 96 permutations

of triplet mutation context) of each sample and found greater
diversity within metastatic samples compared with primary sam-

ples (Wilcoxon rank-sum test, p = 1.6e�16). Moreover, the evo-

lution of diversity through the phylogenetic trees revealed a

greater Shannon entropy index when all mutations were consid-

ered (Wilcoxon signed-rank test, p = 1e�14) versus stem muta-

tions (SI4 in https://doi.org/10.17632/6cv77bry6m.1).

In summary, although metastases carry the same mutational

signatures described in primary breast cancers, the increased

residuals observed suggest that they probably carry additional

mutation patterns. Remarkably mutation signatures are either

shared across all metastases or across metastases within a

clade, suggesting that they are scars of mutational processes

operative in the metastatic founder clones.

The Predicted Neo-antigen Landscape across
Metastases
Neo-antigens encoded by tumor-mutated genes result in neo-

peptides that can be presented by the major histocompatibility
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class I complex. These neo-peptideshave thepotential for binding

TCRs and eliciting anti-tumor adaptive immune responses (Brown

et al., 2014). We integrated WES and RNA-seq data to predict in

silicoputative neo-antigens (STARMethods). Across themetasta-

ses, around 16% of expressed non-silent metastatic mutations

yielded 1 or more predicted neo-epitopes (with IC50 < 500 nM),

but only a small fraction (3%) of predicted neo-antigens originated

from cancer drivers. Most predicted neo-antigens arise from

metastatic stem (56%) and metastatic clade mutations (36%)

(Figure 5A, top panel). Recently it was reported that loss of hetero-

zygosity (LOH) at theHLA locusoccursasamechanismof immune

escape (McGranahan et al., 2017). Using the same method, we

identified clonal LOH (present in every single metastasis) in cases

330 (in all three HLA class I alleles) and 315 (in HLA-C) and subclo-

nal LOH (present in a fraction of themetastases) in cases 288, 290,

298, and 308 (Figure 5A, bottom panel). In case 330, the neo-anti-

gens were significantly (p = 0.01, Wilcoxon rank-sum test) more

commonly predicted to be presented by the lost HLA alleles. In

the remainder of cases, this difference was not significant for any

of the lost HLA alleles. Nevertheless, on average, 55.4% of pre-

dicted neo-antigens associated with the lost HLA allele and,

hence, could not be presented directly by tumor cells.

We next asked, using a previously reported approach (Rooney

et al., 2015), whether there was evidence for selected elimination

of immunogenic sub-clones across individual metastases. The

method relies on determining the ratio of observed-to-expected

neo-epitopes, and to estimate the distribution of the number of

expected neo-epitopes, we used simulated mutations that

mimic the observed mutations (STAR Methods). We generated

100 datasets of simulated mutations for each sample and

calculated the corresponding observed-to-expected ratios

both for individual metastases and after combining all metasta-

ses from the same case or from the same organ across cases.

The results (Figure 5B) showed that only one single metastasis

(328-003, brain metastasis) had all 100 ratios below one (i.e.,

empirical p z 0.01), suggesting immunoediting. We also

estimated a null distribution for the mean observed-to-expected

ratio using 20 of the simulated mutation datasets, generating

for each one of them 100 simulated datasets and calcu-

lating the mean of the ratios (SI5 in https://doi.org/10.17632/

6cv77bry6m.1). When grouping all metastases per case, none

had a mean ratio lower than expected (compared with the 20

replicates) (Figure S5A), and when lumpingmetastases by target

organ across cases, no organ site showed a trend suggesting

immunoediting (Figure S5B).

In summary, in disseminated lethal breast cancer, most of the

predicted neo-antigens originate from mutations shared across

metastases, with only a small number being private to individual

metastasis. LOH of HLA alleles was observed in many metasta-

ses (clonal in two cases), and non-synonymous mutations pre-

dicted to be neo-antigenic were frequently associated with the

lost HLA allele, suggesting tumor cell immune escape. Overall,

the number of predicted neo-antigens in each metastasis was

only exceptionally lower than expected, suggesting that, in late

metastatic breast cancer, tumor cells are already in the escape

phase of the immunoediting process, where cancer cells have

acquired the ability to circumvent immune recognition or

destruction (Schreiber et al., 2011).
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Heterogeneity of the TME across Metastases
We characterized the TME across individual metastases using a

combination of computational pathology of digitally scanned

H&E slides (64 frozen sections of the tissue used for RNA extrac-

tion and 102 FFPE tumor biopsies), manually scored immunohis-

tochemistry (IHC) of a set of immunemarkers (n = 102), and gene

expression data (RNA-seq, n = 64).

We previously reported the use of digitized H&E slides and

machine learningmethods to classify cells within a tumor as can-

cer, stromal, or lymphocytes (Ali et al., 2016b). Using this

approach, we analyzed 166 frozen and paraffin-embedded met-

astatic and primary tissue sections (STAR Methods), and the

data revealed significant heterogeneity of cell numbers, frac-

tions, and densities across individual metastases, showing the

variable spatial architecture of the TME (Figures 6A and S6A;

SI6 in https://doi.org/10.17632/6cv77bry6m.1). In parallel IHC

(102 FFPE sections), semiquantitative analysis by expert pathol-

ogists revealed variable numbers of CD4 and CD8 T cells per

surface area (Figure 6A, bottom panel).

The patterns of immune infiltration can also be inferred using

deconvolution of bulk gene expression (Hackl et al., 2016). In pri-

mary tumors, these patterns are variable across subtypes and

associated with response to therapy and survival (Ali et al.,

2016a). We performed these analyses across metastases from

9 caseswith available RNA-seq data. The immune cytolytic activ-

ity score (Rooney et al., 2015) was highly variable across metas-

tases (Figure 6B). We further characterized TME expression

signatures using a recently reported deconvolution methodology

(Charoentong et al., 2017). This tool provides normalized

Z scores for a list of cancer immunity parameters, including 20

single factors (major histocompatibility complex [MHC] mole-

cules, immunoinhibitors, and immunostimulators) and six cell

types (STAR Methods). These Z scores were visualized as

immunophenograms for each individual metastasis or used to

generate clustered heatmaps across metastases for each case.

Inspection of the immunophenograms revealed variability of the

TME in metastases both between and within each of the cases

(Figure 6C; SI6 in https://doi.org/10.17632/6cv77bry6m.1). This

was mirrored in IHC analysis of a total of 14 TME markers, which

also revealed heterogeneous TME across metastases (SI6 in

https://doi.org/10.17632/6cv77bry6m.1). Unsupervised hierar-

chical clustering based on the Euclidean distance matrix of the

Z scores across metastases showed that the immune parame-

ters tended to cluster naturally into major functional groups:

immunogenic or immune-suppressive (Figure 6D; Figure S6B).

The clustering of the individual metastasis in each case also

had interesting features. In cases 288, 290, and 330, it appeared

as if the TME clustering of themetastasesmirrored their genomic

clades (Figure 6D; Figure S6B). The TME clustering seen could

simply reflect the metastatic organ site, but in other cases,

metastases to the same organ had very distinct TMEs:meningeal

and bone metastases in case 308, liver metastases in case 315,

and brain metastases in case 328 (Figure S6). We also examined

the expression of immunomodulators (Tang et al., 2018; Thors-

son et al., 2018), and this also revealedmetastases largely segre-

gated by target organ and by genomic clade (Figure 6E).

In summary, multiple orthogonal methods congruently

demonstrated that the immune TME is not uniform across
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Figure 6. The Tumor Microenvironment Is Heterogeneous across Metastases

(A) Median lymphocyte density (computational pathology of digitally scanned H&E slides) (top panel) and CD4 and CD8 T number per square millimeter (IHC

staining) (bottom panel).

(B) Cytolytic activity score across metastases based on transcript levels of granzyme A (GZMA) and perforin (PRF1).

(C) Immunophenograms across metastases of case 288. Each immunophenogram is color-coded in the outer part of the wheel (red, positive Z score; blue,

negative Z score) for each of the parameters and gray-scaled in the inner part of the wheel, with a weighted averaged Z score within the respective category.

Z scales are shown in the bars. MHC, antigen processing; CP, checkpoints/immunomodulators; EC, effector cells; SC, suppressor cells.

(D) Heatmaps depicting two-way unsupervised hierarchical clustering of immune parameters and metastases for patients 288 and 330.

(E) Gene expression of immunomodulators from RNA-seq gene expression (76 genes from Thorsson et al., 2018). Z-scored transformed TPMs are plotted across

all 64 RNA-seq metastases from 9 patients.
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Figure 7. Analysis of the TCR Repertoire across Metastases

(A) Boxplots of proportions of TCR reads classified as metastatic stem, metastatic clade, and metastatic private. Bars indicate significance of differences (not

significant [NS], p > 0.05; ***p < 0.0005).

(B) Boxplots of overlap coefficients between metastatic sites of TCR b chain nucleotide sequence repertoires. Data for case 308 is shown.

(C) Boxplots showing the TCR clone sizes according to their stem, clade, or private status. *p < 0.05.

(D) Clustering of TCR b chain CDR3 amino acid sequences using Jaccard distance across metastases.

(E) Jaccard tree for the TCR b chain CDR3 amino acid sequence (top panel) and the WES phylogenetic tree from OncoNEM (bottom panel) for case 308.
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metastatic sites within a patient, although it can be both relatively

homogeneous in metastatic clades in some cases and different

across metastases to a particular organ in other cases.

The Repertoire of TCRs across Metastatic Sites
The landscape of neo-antigens is thought to determine the

immunogenicity of cancers and, in particular, the anti-tumor re-

sponses mediated by T cells. We therefore characterized the

repertoires of TCRs in tumor-infiltrating lymphocytes (TILs)

across metastases and integrated this with the genomic data

(Figure 7; Figure S7).

We sequenced the antigen binding regions of TCRs of TILs us-

ing direct amplification of the a and b TCR chains in RNA isolated

from 70 metastases from 8 patients (STAR Methods). Each RNA

sample was amplified and high-throughput-sequenced sepa-

rately for a and b TCR chains. These sequences represented a

diverse set of TCRs with a mean of 5,204 unique TCR sequences

per sample (a, 5,551; b, 4,857). The a and b chain V-J gene usages

were highly correlated in each metastatic sample and across all

metastases, attesting to the quality of the data (Figure S7A).

Public TCRs are defined as TCRs that are shared between un-

related individuals, and these are thought to bind shared pep-

tides; for example, of viral origin (Li et al., 2012). Therefore, we

focused our analyses on non-public TCRs by first removing

both the TCR b chain sequences derived from unrelated individ-

uals in the Adaptive database (Dean et al., 2015) and the TCR a

and b chain sequences shared between any of the 8 cases pro-

filed. This filtering step enriched for TCRs that bind patient-

specific antigens, including tumor neo-antigens (Figure S7B).

The non-public TIL TCRs were classified in each case as stem

when shared between all metastatic sites in a patient, clade

when shared between some sites, or private when found in a

single metastasis. Interestingly, a significant fraction of the

TCR repertoire was comprised of stem (mean a/b, 21.60%/

24.53%) and clade (mean a/b, 58.13%/49.67%) clonotypes (Fig-

ure 7A). These data indicate that a significant proportion of T cell

clones in TILs from an individual metastasis either recirculate

to other metastatic sites or that T cell clones recognizing the

same neo-antigen are recruited to several metastatic sites

independently. Given the evidence for T cell sharing across indi-

vidual metastases, we quantified the degree of clonal sharing

(STARMethods) of CDR3 a and b clonotypes acrossmetastases

and showed significant variation between sites and patients.

This is exemplified by case 308, which revealed significant differ-

ences in TCR clonal sharing between and within metastatic

target organs (Figure 7B) (see SI7 in https://doi.org/10.17632/

6cv77bry6m.1 for the remainder of cases). Indeed, the TCR

clonal overlap coefficient was significantly higher between me-

tastases within the same target organ than in metastases to

different target organs. In addition, there was a high TCR clonal

overlap coefficient between bone and pericardium metastases,

which formed a mediastinal mass in case 308.

We next assessed the clonal architecture of tumor-infiltrating

T cells at each site using sequence diversity measures (Bash-

ford-Rogers et al., 2013; Madi et al., 2017). This measures the

unevenness of TCR clone sizes (clonality) within each site,

where each TCR clone is defined by a unique TCR sequence,

and its size is defined by the frequency of that sequence within
the total repertoire (STAR Methods). The T cell clonality in total

mononuclear cells, CD3+ T cells, naive T cells, and central

memory T cells from a healthy individual’s blood sample, pro-

filed using the same method, were very distinct from breast

cancer metastases T cells; although the former exhibited only

low levels of expanded T cell clones with mean largest cluster

sizes of 3.93% (range, 1.03%–7.01%), most metastases

showed higher levels of specific T cell clonal expansion (mean

largest cluster size, 14.97) (Figure S7C). Interestingly stem

and clade TCR clones were significantly more expanded than

TCR clones from a single metastasis (Figure 7C; SI7 in https://

doi.org/10.17632/6cv77bry6m.1), and the shared TCR clones

showed significant differences in clonal representation be-

tween metastatic sites, contrasting with relatively uniform

clones in normal samples (Figure S7D; SI7 in https://doi.org/

10.17632/6cv77bry6m.1). The fact that T cell clones that are

shared are also significantly enlarged compared with site-spe-

cific clones is suggestive of immune surveillance between

metastases.

Clustering of TCR repertoires of TILs by the level of sharing of

CDR3 amino acid sequences (using the Jaccard index) revealed

that TCR repertoires were distinct between each metastatic

breast cancer patient (Figure 7D). There was only a small degree

of sharing of TCR CDR3 sequences between unrelated patients,

which may occur by chance at low frequencies, and high levels

of TCR CDR3 sequence sharing between metastases within

each patient. Indeed, within each patient, the unsupervised

CDR3 TCR clustering nearly accurately segregated the metasta-

ses by organ, and clustering was consistent with both a and b

TCR chains (SI7 in https://doi.org/10.17632/6cv77bry6m.1).

Using two methods for evaluating hierarchical tree structure,

cophenetic correlation and Robinson-Foulds metric (STAR

Methods), we showed that the TCR repertoires clustered signif-

icantly by organ (p < 2.2e�16) rather than by chance or by differ-

ences in TCR repertoire sampling depth.

We noted that, in 4 of the autopsy cases (288, 290, 308, and

315) where both WES and RNA TCR sequencing data were

available across several metastases, the tumor OncoNEM

phylogenetic trees and the TCR Jaccard phylogenetic trees

had remarkably similar structures (Figure 7E; SI7 in https://doi.

org/10.17632/6cv77bry6m.1). To formally test this, we used

the cophenetic statistic to assess the correlation. This analysis

confirmed that, in 3 of the 4 cases (288, 315, and 308), the

TCR a chain trees significantly correlated with the genomic trees

(cophenetic correlation of 0.460, 0.235 and 0.518; p% 0.05), and

in 2 of the 4 cases (288 and 308), the TCR b chain trees also

correlated with the genomic trees (cophenetic correlation of

0.38 and 0.598, p% 0.08 [borderline] and p < 0.01, respectively)

(Figure 7E; SI7 in https://doi.org/10.17632/6cv77bry6m.1).

To further corroborate the robustness of the findings, the cor-

relation between the RNA-seq and the TCR repertoire datasets

(STAR Methods; Figure S7E) was tested. The sum of the log10

transcripts per million (TPM) values for the four CD3 complex

genes (a unique marker for all T cells) and the number of TCR

reads (the sum of a and b chains) were highly statistically corre-

lated (Pearson correlation, 0.717; p < 1.684e�10).

In summary, these data provide a detailed view of the adaptive

immune response in metastatic cancer and reveal that the TCR
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repertoire of TILs is highly diverse between cases; within each

case, a significant fraction of TIL TCRs are shared between me-

tastases, suggesting immune surveillance between metastatic

sites. The clonal prevalence of shared TIL TCRs in each individ-

ual metastasis can be very different; the TCR repertoire clusters

metastases by target organ within each case, and tumor phylo-

genetic trees appear to be correlated with TIL-TCR trees across

metastases within a case. This correlation suggests co-evolution

between tumor diversity and T cell response across metastases.

DISCUSSION

The comprehensive molecular analysis of multi-regional metas-

tases collected from 10 autopsies of breast cancer patients

subjected to multiple lines of therapy described here details

the heterogeneous landscape of genomic aberrations, TME fea-

tures, and T cell adaptive immune responses in lethal cancer.

The only comparably sized study (10 autopsy cases) was

recently published, but it limited its analysis to DNA sequencing

of the available 41 paraffin-embedded tumor samples (Brown

et al., 2017).

The genomic landscapes revealed that metastatic private

driver mutations are relatively uncommon and that nearly all

driver CNAs and SNVs are shared across all (stem) or a subset

(clade) of the metastases. The normalized expression of the

mutant allele is progressively lower in metastatic clade and met-

astatic private mutations compared with metastatic stem muta-

tions, suggesting that, as metastases evolve from common

ancestors, they accumulate higher proportions of mutant alleles

that are passengers and, therefore, have lower or suppressed

expression.

In 6 cases, targeted deep sequencing of available primary

samples confirmed that a fraction of tested mutations were de-

tected at high CCFs, confirming that the metastases originated

from the surgically resected tumor. However, in five of these,

deep sequencing failed to identify some metastatic stem muta-

tions and most of the metastatic clade mutations tested,

including cancer driver mutations. Given the high depth and

quality of the TS data, it is exceedingly unlikely that a trivial tech-

nical issue (allele dropout) could explain this result. The most

likely scenarios are either that metastases originate from aminor

clone not sampled in the primary tumor because of spatial het-

erogeneity or that metastatic stem and clade mutations could

be acquired by metastatic cancer cells after these leave the

breast. Indeed, in case Det52, we reported previously that

metastatic stem mutations could be identified as a minor clone

in the axillary lymph node, consistent with an original metastatic

ancestor being present at that site (Murtaza et al., 2015).

Whether that is the rule or whether other sites (e.g., the bone

marrow) (Harper et al., 2016; Hosseini et al., 2016) could have

a similar metastases seeder role will require studying larger

numbers of cases.

The genomic phylogenetic analysis showed clearly that the

multiple metastases in each case (with one exception) grouped

into a small number of clades (up to three). These clades were

populated by a common seeder, itself a descendant of the

original metastatic ancestor, and clades were anatomically

distributed to one or more target organs. In each individual
2704 Cell Reports 27, 2690–2708, May 28, 2019
metastasis within a clade, the mutations were either shared

with other clade members or private, and this suggests that

seeding occurs most likely in a single spreading event. Further-

more, the genomic segregation of the metastases was nearly

complete, and only a limited amount of cross-seeding between

clades was observed. Cross-seeding within a clade was rare.

These data suggest that metastatic spread occurs as a result

of a limited number of seeding events.

The classical view of the metastatic cascade has focused on

seeding from single cells (Lambert et al., 2017). However, circu-

lating tumor cell (CTC) clusters occur in the blood of patients with

metastatic breast cancer, and mouse models show that CTC

clusters are oligoclonal and, although rare compared with single

CTCs, have 23- to 50-fold increased metastatic potential (Aceto

et al., 2014). Our analysis using PyClone and CCF is consistent

with metastases often being composed of communities of

genomic clones, as indicated by metastatic stem mutations

and metastatic clade mutations frequently being sub-clonal.

Our previously published data regarding primary tumors (Shah

et al., 2012) and patient-derived tumor xenografts (Bruna et al.,

2016; Eirew et al., 2015) also appear to show that cancers are

communities of genomic clones. The polyclonal origin of breast

cancer metastases has also been reported by others (Hoadley

et al., 2016) and has profound implications for the study of met-

astatic biology and for devising therapeutic strategies.

The mutation signatures across the metastases are a reflec-

tion of the mutational processes operative during the life history

of the cancer. We identified previously reported mutational sig-

natures in all cases and evidence of residual mutations not

explained by any of the canonical mutation signatures described

to date (which have been almost exclusively derived from pri-

mary cancers). Larger autopsy series and WGS data will be

required to definitively establish whether metastases can accu-

mulate novel mutation signatures reflecting both their longer

natural history and the combined scars of therapies and the

effects of immunoediting.

The 10 cases analyzed were patients subject to multiple lines

of targeted therapy (hormone therapy and anti-Her2) and

chemotherapy, to which each patient had developed resistance.

The small cohort and the diversity of cancer treatments the pa-

tients received do not allow confident identification of the mech-

anisms of resistance. Nevertheless, case 308 had a canonical

activating mutation of ESR1 (Robinson et al., 2013; Toy et al.,

2013) across all metastases, and this mutation, a likely mecha-

nism of resistance to hormone therapy, would have been identi-

fied with a single metastatic biopsy. This contrasts with cases

where two different mechanisms for hormone therapy resistance

were identified: losing ER expression in some metastases and

11q13 amplification in ER-positive metastases in case 288 and

losing ER expression in some metastases and an activating

ESR1 mutation in ER-positive metastases in case 290. These

distinct forms of resistance in both cases correspond to their

metastatic phylogenetic clades and imply that for both to be

identified would require at least two metastatic biopsies.

The combined analysis of somatic cancer aberrations, TME

deconvolution, predicted tumor neo-antigens, and TCR reper-

toire from lethal metastatic breast cancer autopsies afforded

us a unique opportunity to analyze the interactions between



themalignant and TME compartments acrossmulti-regional me-

tastases. Most of the predicted neo-antigens arose from meta-

static stem and clade mutations, and this result concurs with

what has been reported in lung cancer (McGranahan et al.,

2016). Immune selection, as evidenced by depletion of neo-epi-

topes, was scarcely seen across metastases, suggesting that in

advanced breast cancer, most of the metastases are in the

escape phase of immunoediting (Schreiber et al., 2011).

TME composition and its spatial architecture were also het-

erogeneous across metastases from individual cases. This

TME diversity had no direct correlation with evidence for differ-

ential immunoediting and has also profound implications for

immune checkpoint inhibitor therapy because, for example,

PD1 and PDL1 expression was different across metastases.

The occurrence of HLA LOH suggests that tumor cells also

evolve to avoid presenting neo-antigens, and this might also

contribute to immune escape.

A major determinant of the ability of the adaptive immune sys-

tem to eliminate tumors is the diversity of the TCR repertoire in

TILs. Although the level of sharing of TCRs between patients

was minimal, an important observation was the large fraction of

TCRs either shared across all the metastases (stem TCRs) or in

at least 2metastases (clade TCRs) within a case. This finding sug-

gests that specific TCRs reacting to tumor neo-antigens, which

are mostly stem and clade, are present across metastatic sites.

Shared TCRs could be clonally dominant in an individual metas-

tasis and minor clones at other metastatic sites. We could not

identify any correlation between clonal inequality (measured by

either Gini or Shannon index) or intra-tumor heterogeneity, muta-

tion, or neo-antigen burden (data not shown); however, other

factors, such as chemokines, may influence the migration and

proliferation of T cell clones between sites.

TCR similarity was higher in metastases within a given meta-

static organ. This observation led us to cluster the metastases

across all patients and organs based on TCR diversity and/or

similarity, revealing each patient clustered separately from all

others and, within an individual patient, nearly perfect metastatic

organ segregation. Very distinct TCR repertoires between pa-

tients were an expected result. However, within an individual

patient, TCR repertoires in metastases to the same organ were

more similar. This observation was robust and highly statistically

significant, suggesting that TCR repertoires in TILs are tuned to

target organs where metastases tend to share a common

genomic ancestor. Indeed, genomic phylogenetic trees and

TCR repertoire Jaccard trees showed remarkably similar archi-

tectures in the 4 cases where we had parallel WES and TCR

sequencing data from more than 4 metastases. We tested this

more formally using tools developed by ecologists, and the

correlation was statistically significant in 3 of the cases. This is

suggestive of co-evolution of cancer genomes and the TCR rep-

ertoires of the samemetastases, providing unique patient-based

evidence for the cancer immunoediting hypothesis. An alterna-

tive explanation that is not contradictory is that tissue-resident

T cells, which have tissue-specific TCR repertoires, infiltrate

metastases, giving rise to the observed TCR similarities. Such

differences in the composition of TCR repertoires between tis-

sues can be part of the forces that influence clonal evolution of

metastatic cancer cells. These findings can have important
implications for T cell-based immunotherapies. For example,

peptides that are derived from neo-antigens and are used for

vaccination should be tailored differently for different metastatic

sites. Similarly, adoptive T cell therapies based on patient T cells

or engineered receptors should also take into account differ-

ences in TCR composition and reactivity between metastatic

sites. On the other hand, the presence of TCRs shared across

metastases and the fact that most neo-antigens are also shared

across all or subsets of metastases could be translated into

either T cell-based therapies or modulation of immune check-

points that would elicit an effective anti-tumor response across

all metastases.

The extensive profiling of multi-regional metastases in lethal

breast cancers resistant to several lines of therapy analyzed

here has provided a unique glimpse into how metastases prop-

agate and evolve, how drug resistance mechanisms vary, how

their predicted neo-antigen landscapes look, how they shape

and/or are shaped by the TME, and how the T cell adaptive

immune response appears to co-evolve with the metastatic ge-

nomes. These data should motivate the research community to

consider launching a lethal cancer genome project. This project,

across common human cancers in a sufficiently large number of

autopsy cases from patients with detailed therapy exposure

histories, will produce the detailed integrated maps required

for understanding resistance to therapy and escape from cancer

immunoediting.
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bcl2fastq2 2.17 Illumina https://support.illumina.com/sequencing/sequencing_software/

bcl2fastq-conversion-software.html

R 3.2.2 R Core Team., 2017 http://www.r-project.org

MATLAB version 9.2 1994-2017 The

MathWorks, Inc.
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MuTect Cibulskis et al., 2013 https://software.broadinstitute.org/gatk/download

Strelka 1.0.14 Saunders et al., 2012 strelka@ftp.illumina.com

VEP (The Ensembl Variant Effect Predictor) McLaren et al., 2016 http://www.ensembl.org//useast.ensembl.org/info/docs/tools/
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Fdocs%2Ftools%2Fvep%2Findex.html

Integrative Genomics Viewer (IGV) Robinson et al., 2011 http://software.broadinstitute.org/software/igv/

Picard v2.2.1 Picard https://broadinstitute.github.io/picard/

samtools v1.3.1 Li et al., 2009 http://www.htslib.org/

ea-utils v1.1.2 Ea-utils https://github.com/ExpressionAnalysis/ea-utils

Bioconductor 3.2 Huber et al., 2015 http://www.bioconductor.org

Bioconductor package QDNaseq 1.2.4 Scheinin et al., 2014 http://www.bioconductor.org

GISTIC2.0 Mermel et al., 2011 https://cloud.genepattern.org/gp/landingpage/index.html

iC10: A Copy Number and Expression-Based

Classifier for Breast Tumors

Ali et al., 2014 https://rdrr.io/cran/iC10/

pam50: PAM50 classifier for identification of

breast cancer

Parker et al., 2009 https://rdrr.io/bioc/genefu/man/pam50.html

R package deconstructSigs 1.8.0 Rosenthal et al., 2016 http://www.r-project.org/

ASCAT 2.5 Van Loo et al., 2010 https://www.crick.ac.uk/peter-van-loo/software/ASCAT

PyClone 0.12.7 Roth et al., 2014 http://www.shahlab.ca

EnsDb.Hsapiens.v75 Rainer, 2016 http://bioconductor.org/packages/release/data/annotation/

html/EnsDb.Hsapiens.v75.html

POLYSOLVER Shukla et al., 2015 https://software.broadinstitute.org/cancer/cga/polysolver

pVAC-Seq pipeline Hundal et al., 2016 https://github.com/griffithlab/pVAC-Seq

Immunophenogram Charoentong et al., 2017 https://github.com/mui-icbi/Immunophenogram

MEDICC (devel branch, commit da7ed4a) Schwarz et al., 2014 https://bitbucket.org/rfs/medicc

superFreq 0.9.17 Flensburg et al., 2018 https://github.com/ChristofferFlensburg/cnv-caller

treeomics 1.7.3 Reiter et al., 2017 https://github.com/johannesreiter/treeomics

OncoNEM 1.0 Ross and Markowetz,

2016

http://bitbucket.org/edith_ross/onconem/src

Tree: Raxml v8.2.1 Stamatakis, 2014

VarScan 2.4.3 Koboldt et al., 2012 http://dkoboldt.github.io/varscan/

alleleCount 3.1.1 alleleCount https://github.com/cancerit/alleleCount

QUASR Watson et al., 2013 https://sourceforge.net/projects/quasr/

BLAST Altschul et al., 1990 ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/

IMGT Lefranc, 2011 http://www.imgt.org/

Primer Design: mprimer (v1.9), primer3

(v2.3.7), in silico PCR

Koressaar and Remm,

2007; Shen et al., 2010;

Untergasser et al., 2012
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ggplot2 2.2.1 ggplot2 https://ggplot2.tidyverse.org

Igraph 1.0.1 Igraph https://cran.r-project.org/web/packages/igraph/index.html

Ape 4.1 Paradis et al., 2004 https://cran.r-project.org/web/packages/ape/index.html

Dendextend 1.5.2 Galili, 2015 https://cran.r-project.org/web/packages/dendextend/index.html

nonnegative matrix factorization Gaujoux and Seoighe,

2010

https://cran.r-project.org/web/packages/NMF/index.html

limSolve Soetaert et al., 2009 https://cran.r-project.org/web/packages/limSolve/index.html

Other

Adaptive 587 cohort data https://genomemedicine.biomedcentral.com/articles/10.1186/

s13073-015-0238-z

Silhouettes http://silhouettesfree.com/download-silhouette/liver-silhouette/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Carlos

Caldas (Carlos.caldas@cruk.cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients
Ten metastatic breast cancer patients who underwent post-mortem warm autopsies were included in this study. Nine patients were

enrolled as part of the Vall d’Hebron Institute of Oncology (VHIO) Warm Autopsy Program, and one patient was enrolled at the

Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK as previously described (Murtaza et al., 2015).

Informed consent was obtained for all patients. Research autopsies were performed under VHIO Warm Autopsy Program

protocols approved by the institutional review board (IRB) of Vall d’Hebron University Hospital (Barcelona, Spain) and under a study

protocol approved by the Cambridgeshire Research Ethics Committee (Cambridgeshire 3 REC 07/Q0106/63MN.A).

METHOD DETAILS

Sample Nomenclature
Each sample identifier (ID) follows the nomenclature NNN-sample, where NNN denotes the patient ID. For whole exome sequencing

(WES) and T cell receptor (TCR) sequencing, NNN-0XX indicates sample type (solid tumor or body-fluid derived DNA) (Table S1). For

targeted amplicon sequencing and shallow whole genome sequencing (sWGS), the sample nomenclature is specified in Table S1.

Briefly, this was derived from the primary tumor (PR), metastasis (year sample was taken (i.e., �13), followed by ID)) or body-fluid

derived cell-free DNA (plasma, CSF, ascitic fluid, pleural fluid).

Nucleic acid extraction
The histologic evaluation of each diagnostic primary tumor ormetastatic lesion from autopsy of the nine VHIO patients was confirmed

on review of routine hematoxylin and eosin-stained slides. Samples were processed as previously described (De Mattos-Arruda

et al., 2015). DNA and RNA were isolated from tumor tissue using commercially available kits according to manufacturer’s specifi-

cations (Key Resources Table). DNA was extracted from peripheral blood mononuclear cells and body fluids using commercially

available kits as permanufacturer’s specifications (Key Resources Table). RNA andDNAwere quantified using the Qubit Fluorometer

(Invitrogen).

The collection, processing, DNA extraction and preparation of exome-sequencing libraries of DET52 patient for tumor tissues and

plasma samples have been described previously (Murtaza et al., 2015).

WES AND sWGS ANALYSES
DNA sequencing

Libraries for Illumina sequencing were prepared using Illumina Nextera Rapid Capture Exome kit (cat. FC-140-1003, Illumina). Prior to

library preparation DNA concentrations for each sample were quantified using a fluorescence-based method (Quant-IT dsDNA BR,

cat. Q33130, Thermo Fisher Scientific) and 50ng of genomic DNA was used for library preparation.

Samples were processed following manufacturer’s instructions (part# 15037436 Rev. J, Illumina) for WES and sWGS. Prior to first

hybridization all libraries were quantified using quantitative polymerase chain reaction (qPCR). KAPA Library Quantification Kit
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(cat. KK4873, KAPA Biosystems) as used as per manufacturer’s recommendations. A subset of libraries was analyzed using DNA

1000 Kit (cat. 5067-1504, Agilent).

Whole genome libraries and exome libraries were normalized and pooled in equal volumes to create balanced pools. Each pool

was normalized to a molarity of 4nM and used for sequencing with clustering concentration 20pM with 1% spike-in of PhiX control.

Sequencing was performed on an Illumina HiSeq2500 using v4 chemistry and 50 cycles single-end for s-WGS and 75 cycles paired-

end for WES.

Demultiplexing was performed using Illumina’s bcl2fastq2 v.2.17 software using default options. FASTQ files were used for sub-

sequent data analysis.

WES analyses

Adaptor and low-quality base (Phred score below 20) trimming, alignment to the GRCh37 build of the human genome, and base qual-

ity recalibration were performed using Novoalign v 3.02 (Novocraft). Coordinate sorting of reads and PCR-duplicate marking was

performed using Novosort (v 3.02). The resulting bam files for all samples for the same patient were locally realigned using the

Genome Analysis Toolkit (GATK, v 3.4.46) (DePristo et al., 2011). MuTect (version 1.1.7) was run using default parameters (Cibulskis

et al., 2013). In order to decrease the false positive rate secondary to germline variants of noisy regions within the genome, a panel of

normals derived from 300 normal tissue exomes was generated using MuTect’s artifact detection mode and supplied to MuTect

during variant calling. Strelka (version 1.0.14) (Saunders et al., 2012) was run with recommended starting parameters for BWA

and default parameters. The isSkipDepthFilters parameter was set to 1 to skip depth filtration. Only tier 1 mutations, as well as

SNVs with a QSS_NT score higher than 15 and Indels with a QSI_NT score higher than 30 were retained. Mutations present in all

samples for each patient were then concatenated into one VCF, and Haplotypecaller was used in GENOTYPE_GIVEN_ALLELES

mode to detect these mutations across all samples.

SNVs and indels that fell into any of these categories were removed:

d Rejected by MuTect for a reason different than ‘‘DBSNP Site,’’ ‘‘DBSNP Site,alt_allele_in_normal’’ or ‘‘alt_allele_in_normal.’’

Mutations rejected by MuTect by any of these reasons that were present in the 1000 Genomes Project were also rejected

d Read depth less than 10

d Variant allelic frequency less than 0.05 in all samples for one patient

d Minimum allelic frequency of 0.02 per sample

d SNVs falling in segmental duplications regions, as annotated by annovar (Wang et al., 2010) genomic superDups, were clas-

sified as potential artifacts. Those that occurred in more than one patient, or in only one patient but in less than 25% of the

samples from that patient were removed

d SNVs falling in simple repeat regions, microsatellites or homoplymers were removed.

Somatic mutations were annotated using Variant Effect Predictor (VEP, http://grch37.ensembl.org/index.html) (McLaren et al.,

2016) and visualized using IGV (Robinson et al., 2011).

sWGS analyses

50 bp single-read sWGS was performed to provide copy number profiles. FASTQ files were aligned to the GRCh37 assembly of the

human genome using BWA (Li and Durbin, 2009) and the bam files were merged, sorted and indexed using samtools (Li et al., 2009).

Duplicates were marked using Picard. Copy number profiles were obtained using the R package QDNaseq (Olshen et al., 2004),

using non-overlapping 100 kb pairs windows, and correcting for mappability and GC content.

Targeted amplicon sequencing

Targeted amplicon sequencing (TS) was performed in 464 unique amplicons derived from WES across 10 patients (average

46.4/case, range 16-127). Targeted sequencing libraries were prepared using droplet-based PCR amplification following the man-

ufacturer’s protocols for ThunderBolts Cancer Panel with specific modifications (RainDance Technologies) as previously reported

(Murtaza et al., 2015). Multiplex primers sequences are shown in Table S6. Analysis of targeted sequencing data was performed

as described previously (Murtaza et al., 2015). For each locus and non-reference allele of interest, we assessed the allele fraction

in eight control genomic DNA samples. A mutation was considered significantly detectable if minimum coverage at that locus

was 500x, and the AF in a sample was greater than or equal to 3 standard deviations higher than the mean AF in control samples,

and if present in greater than or equal to 1% allelic fraction (AF). Additionally, any samples in which over 90% of all mutations had

AFs below 5% were excluded. The mutation calls generated from targeted sequencing were then used to assess the quality of

the exome mutation calling pipeline. Any mutations detected on both WES and TS were defined as true positives (TP), mutations

detected on WES, but not TS defined as false positives (FP), mutations detected on TS but not on WES defined as false negatives

(FN), and finally mutations that were not detected on TS and WES defined as true negatives (TN). Sensitivity was subsequently

calculated as TP/(TP+FN), specificity calculated as TN/(TN+FP), precision calculated as TP/(TP+FP) and accuracy calculcated as

(TP+TN)/(TP+FP+FN+TN).

Genotyping

Germline SNPs and indels were identified in all samples using GATK HaplotypeCaller, and all tumor samples were then genotyped to

the matching normal tissues by computing the percentage of shared SNPs and indels between tumors and normal. Concordance of

more than 90% was taken to indicate related samples.
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RNA-sequencing analysis
RNA sequencing

RNA sequencing libraries were prepared using the TruSeq Stranded Total RNA HT kit with Ribo-Zero Gold (cat. RS-122-2303,

Illumina). Prior to library preparation samples were quantified using a fluorescence based method and RNA quality was assessed

using RNA 6000 Nano Kit (cat. 5067-1511, Agilent) on Bioanalyzer2100 (Agilent). Depending on availability, 400-900ng of total

RNA was used for library preparation. The RNA Integrity Number (RIN) for these samples varied from 2.3 to 7.2. Samples were pro-

cessed following manufacturer’s HS (High-Sample) instruction (part# 15031048 Rev. E, Illumina). Subset of 12 libraries was analyzed

using DNA 1000 Kit (cat. 5067-1504, Agilent) and the average library length was determined as 280bp. All libraries were quantified

using qPCR. Serial dilutions were made and 100,000x dilution was used for quantification using KAPA Library Quantification Kit Illu-

mina (cat. KK4873, KAPA Biosystems). Libraries were normalized to 40nM and pooled in equal volumes to create a balanced pool.

The library pool was quantified after doing serial dilutions in triplicate and 10,000x and 100,000x dilutions were used for quantifica-

tion. The final library was normalized to 4nM and sequenced at a clustering concentration of 20pMand 22pMwith 1%spike-in of PhiX

control (cat. FC-110-3001, Illumina). Sequencing was performed on HiSeq2500 v4 chemistry single-end flow cell (Illumina) following

manufacturer’s instructions. Demultiplexing was performed using bcl2fastq2 v.2.17 software (Illumina) using default options.

RNA sequencing analyses

FASTQ files were aligned to the GRCh37 assembly of the human genome using STAR v 2.5.2b in two-pass mode for splice-aware

read alignment. Counting of reads aligned over exonic features for the purpose of differential expression was performed using the

htseq-count script in the HTSeq package (v 0.6.1) in ‘Union’ overlap resolution mode using a Gene Transfer Format (GTF) file

from Ensembl (http://www.ensembl.org//useast.ensembl.org/?redirectsrc=//www.ensembl.org%2F). The gene counts for all

samples were then collated and FPKM calculations per gene per sample performed using the rpkm() function in the edgeR

R package. De novo transcript assembly and counting of transcripts was performed using Cufflinks v2.2.1.

For variant calling, STAR-aligned BAM files were processed as per the RNA-seq GATK Best Practices. Briefly, sequencing read

duplicates were marked using Picard MarkDuplicates, followed by Split’N’Trim and mapping quality reassignment using GATK

SplitNCigarReads (v3.6). This was then followed by local realignment across indels and base quality recalibration using GATK.

Mutations detected in the corresponding DNA sequencing data were genotyped in RNA using the GENOTYPE_GIVEN_ALLELES

mode in Haplotype caller.

Selection of driver mutations

Breast cancer driver mutations were defined as those genes identified in previous publications (Lefebvre et al., 2016; Nik-Zainal et al.,

2016; Pereira et al., 2016) and non-breast cancer drivers were defined as those present at the Cancer Gene Census and non-

overlapping with breast cancer driver mutations (https://cancer.sanger.ac.uk/census/) (Table S4).

Mutational signatures

Somatic substitutions of each metastatic sample were organized into a 96-channel vector (where the six mutation classes and

their immediate flanking sequence context are taken into account), referred to hereafter as a mutational profile. Mutational signature

analysis of these mutational profiles was performed in two steps: extraction and assignment.

The first step in our analysis aimed to identify any signatures previously found in associated primary tumors that are present within

our cohort. It consisted of applying the widely adopted (Alexandrov et al., 2013) Non-negative Matrix Factorization (NNMF) algorithm

(R-CRAN package NMF - (Gaujoux and Seoighe, 2010)) to an extended dataset, where 240 additional WESmetastatic breast cancer

samples (Lefebvre et al., 2016) were added to our original 86 sample cohort. NNMF extraction was performed on these mutational

profiles, bootstrapped 100 times, and a KL-divergence error was used to assess the accuracy of each result. The rank of the NNMF

solution (i.e., the number of extracted signatures), was allowed to vary between 2-20. Across the different extractions, cosine

similarity comparison with known canonical primary tumor signatures (COSMIC) revealed the presence of Signatures 1,2,13, and

17. The use of the additional samples increased the power of the NNMF, enabling a more precise mutational profile extraction for

these four well-known breast-cancer-related signatures.

The second step consisted of assigning the contribution of the four COSMIC signatures identified (Signature 1, 2, 13, 17) to each

sample of our original 86 metastatic cohort. This was computed using a quadratic programming algorithm (R-CRAN package

limSolve - (Soetaert et al., 2009)). A minimum of either 3% of the total number of mutations of the sample or at least 10 mutations

was required for a COSMIC signature to be attributed to a sample. The assignment step was performed on four versions of themuta-

tional profiles for each patient, including: (i) all mutations, (ii) mutations shared across all samples (stem), (iii) mutations shared across

some samples (clade), and (iv) mutations uniquely present in one sample (private).

IntCluster, PAM50 and stratification into breast cancers subtypes

Matched samples (n = 60) with copy number and expression data were classified into one of the 10 Integrative Clusters using the

‘iC10’ R package (Ali et al., 2014; Curtis et al., 2012). The ‘iC10’ package uses copy number and expression from breast cancer

data, trains a pamr classifier with the features available and predicts the iC10 group. Each sample was classified into the 10 Integra-

tive Clusters and the assignment to each model was done by consensus after manual curation in specific cases. The 50-gene sub-

type predictor PAM50 was also applyied to 64 metastases with expression data using the R package genefu (Parker et al., 2009).

ASCAT

ASCAT v2.5 (Van Loo et al., 2010) was run by integrating copy number log ratios generated from QDNaseq and SNP allelic

frequencies from WES data. The gamma technology parameter was set to 1 as recommended for exome sequencing.
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Phylogenetic analyses

Four multi-sample methods were used to infer the metastatic breast cancer phylogenies. MEDICC (Minimum Event Distance for

Intra-tumor Copy number Comparisons) is a method for phylogenetic reconstruction and heterogeneity quantification that uses

allele-specific copy number profiles (Schwarz et al., 2014). OncoNEM (Ross and Markowetz, 2016) and Treeomics (Reiter et al.,

2017) are tools that utilize Bayesian inference to infer phylogenetic relationships frommutation patterns of SNVs. SuperFreq is a clon-

ality tracker that uses single nucleotide variants (SNV) and copy number alterations (CNA) (Flensburg et al., 2018; Savas et al., 2016).

MEDICC

QDNaseq (Scheinin et al., 2014) was applied to the sWGS data to obtain sequencemappability and GC content adjusted log ratios of

read depth. B-allele frequencies were calculated fromWES data at previously inferred germline variant sites using alleleCounte 3.1.1.

Log ratios and B-allele frequencies were segmented on a per case basis using allele specific multi-sample segmentation (Ross et al.,

2017) and allele-specific copy number profiles were inferred using ASCAT 2.5 (Van Loo et al., 2010). The raw ASCAT copy number

profiles were compared across samples for each case and ASCAT was rerun with adjusted ploidy and/or purity estimates where

necessary to obtain the final discrete copy number profiles. Samples with copy number fits of low quality were excluded. Amaximum

copy number cut-off of ninewas applied to bothmajor andminor copy number profiles, replacing any values exceeding this threshold

to comply with MEDICC requirements. Finally, MEDICC was used to infer the phylogenies (Schwarz et al., 2014).

Treeomics

Treeomics 1.7.3 (Reiter et al., 2017) was used to infer phylogenies from both WES and targeted sequencing data. For each case,

Treeomics was used to calculate the posterior probabilities of a variant being present based on total read depth and number of reads

covering the alternative allele. To make the Treeomics analysis computationally feasible, the number of samples had to be reduced

for some of the cases. In order to keep the mutation profiles as diverse as possible and to maintain a good representation of the

different tumor populations, samples that had amutation profile similar to one of the remaining samples were excluded preferentially.

Additionally, all sites whose posterior probabilities were lower than 0.5 in all samples were removed, as these were likely to be false

positives. Finally, Treeomics was applied to each case with subclone detection switched on and all other parameters set to default.

OncoNEM

Like Treeomics, OncoNEM 1.0 (Ross and Markowetz, 2016) was used to infer phylogenies from both WES and targeted sequencing

data. Binary mutation profiles were obtained from the Treeomics posterior probability matrices by setting all entries with a mutation

probability smaller than 0.5 to 0 and to 1 otherwise. The OncoNEM analysis was performed using error parameter optimization over a

parameter range from 0.0001 to 0.1. The Bayes factor threshold epsilon was set to 2.

SuperFreq

SuperFreq was used to infer the clonal composition of the different samples fromWES data. Pileup files of theWES data were gener-

ated using samtools 1.3.1 mpileup using amaximum depth threshold of 10000, a minimummapping quality of 1 and aminimum base

quality of 15. Liberal variant calling was performed using VarScan 2.4.3 mpileu2cns with a p value filter of 0.01, no strand-bias filter

and the variant flag set to only obtain variant sites. Then SuperFreq 0.9.17 was run with default parameters using the normal of all

cases apart from DET52 as reference normal samples.

PyClone

PyClone is a Bayesian clusteringmethod that infers the clonal population structures for each sample (Murtaza et al., 2015; Roth et al.,

2014). It integrates mutation alleles, copy number calls for each sample as input to obtain cellular frequencies for each cluster in each

sample. PyClone was run using a beta- binomial density, using 40000 iterations and a burn-in sample of 20000. A minimum cluster

size of 3 was selected for WES data.

LICHeE

The previously inferred PyClone clusters were used as input for LICHeE. To remove spurious clones from the PyClone output two

filtering steps were performed. First, low prevalence clones that did not exceed a cellular prevalence of 0.1 in any of the samples

were removed. Second, if multiple clusters were present in all samples, all but the cluster with the highest cellular prevalence

were removed. To generate binary presence-absence patterns of mutation clusters across samples, a mutation set was classified

as present in a given sample if at least 40% of its mutations had a VAF larger than 0.01. Finally, LICHeE (commit 238770c) was

used to infer clone trees and sample compositions, assuming a cellular prevalence estimate error of 0.3.

Cytolytic activity score

Cytolitic activity score was calculated as the geometric mean of the GZMA and PRF1 expression levels from RNA gene expression

data (Rooney et al., 2015).

Immunophenogram and immunophenoscore calculations

The immunophenogram (Charoentong et al., 2017) was applied to determine the immunophenotypes of each tumor sample and to

enable the calculation of an aggregated score (immunophenoscore (IPS)), based on the expression of major determinants. These

factors were classified into four categories: MHC molecules (MHC), Immunomodulators (CP), Effector cells (EC), Suppressor cells

(SC), and into 20 single factors (MHC molecules, immunoinhibitors, and immunostimulators) and six cell types (effector cells: acti-

vated CD4+ T cells, activated CD8+ T cells, effector memory CD4+ T cells and effector memory CD8+ T cells; suppressive cells:

Tregs, and MDSCs).

Briefly, the algorithm generates normalized Z scores from gene expression data for a list of cancer immunity parameters (using an

input list of 162 genes (Table S5)). The outer part of thewheel illustrates sample-wise (averaged) Z scores, which is calculated for each
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of the individual 26 parameters. These Z scores are positively weighted according to stimulatory factors (cell types) and negatively

weighted according to inhibitory factors (cell types) and averaged. The inner wheel illustrates the weighted Z scores of the factors

included into the four categories. Z scores R 3 were designated as IPS10 and z-scores % 0 are designated as IPS0.

Unsupervised hierarchical clustering based on the Euclidean distance matrix of the Z scores across metastases (R heatmap.3

function) were used to produce the heatmaps.

HLA typing and in silico neoantigen prediction pipeline

For the metastases of all patients, the 4-digit HLA type was determined using POLYSOLVER (POLYmorphic loci reSOLVER) as

previously described (Shukla et al., 2015).

The pVAC-Seq pipeline (Hundal et al., 2016) was used with minor modifications. All nonsynonymous point mutations identified

were translated into strings of 17-21 amino acids with the mutant amino acid situated centrally. A sliding window method was

used to identify amino acid substrings within the mutant 17-mer that had a predicted MHC Class I binding affinity of % 500nM to

one (or more) of the patient-specific HLA alleles. Binding affinity for the mutant and corresponding wild-type nonamer were analyzed

using the NetMHCPan v3 prediction tool bundled within the IEDB MHC-I binding prediction resources. Following this, for all cases

excluding DET52 (which did not have any RNA expression data), candidate neoantigens were further filtered by retaining mutations

that were also present in the RNA sequencing data, as well as had a gene and transcript RPKM expression of more than 1. Neoanti-

genswere subsequently classified as stem, private and clade by applying the classification derived from theWESmutational dataset.

When generating Figure 5A, highly similar neoantigens generated from one mutation were counted as one.

Neo-antigen simulations
Simulations procedure

We assumed that each gene has its own mutation rate. For each gene, we used the mutations list of 4,742 WES tumor normal pairs

from (Lawrence et al., 2014) (http://www.tumorportal.org) to estimate the gene relative background mutation rate by counting the

amount of mutations the gene had divided by the total number of mutations. Every mutation was then randomly assigned to a

new gene based on the gene’s relative rate. The position within the gene was chosen to maintain the trinucleotide context of

each mutation (the 50 and 30 nearest neighbors and the mutated position) and the variant was based on the original mutation. In addi-

tion, for every base we counted how many times it was sufficiently covered for mutation detection (i.e., > = 14 reads), across 7,732

TCGA tumor WES samples. The fraction of covered patients at a given base was used as a probabilistic weight when selecting the

new position for a mutation.

P value calculation

For a single sample analysis we defined the P-value as the fraction of replications (out 100) that had a neo-epitopes ratio larger than 1.

For combining cases based on their target tissue we tried to see if their average was less expected at random. For that we generated

20 replicates and and 100 additional simulations based on each of the 20 replicates. We then calculated the average neo-epitopes

ratio for each of these sets and compared it to the original ratio. We then calculated a P value for the fraction of the real average being

different from the simulations average.

Loss of heterozygosity in human leukocyte antigen (LOHHLA)

LOH over the HLA Class I locus was identified using LOHHLA on the whole exome sequencing data, and LOH called if the copy

number at HLA-A/HLA-B or HLA-C locus was less than 0.5, with a p value of less than 0.05 (McGranahan et al., 2017).

T cell receptor (TCR) analysis
TCR-sequencing library preparation

Reverse transcription primers were designed using Primer3 (Koressaar and Remm, 2007; Untergasser et al., 2012) and multiplex

PCR primers using MPrimer (Shen et al., 2010). cDNA synthesis was performed using TCR-a or TCR-b constant region-specific

primers carrying amolecular barcode of 12 random/degenerate nucleotides (N12, TNNNNTNNNNTNNNNT) to enablemolecule-level

identification (unique molecular identifier). The molecular barcode was inserted upstream (50) of the sequence that recognizes the

constant region(s) and downstream (30) of an adaptor sequence complementary to first round PCR reverse primers.

Reverse transcription was performed with SuperScript IV First-Strand Synthesis System (Invitrogen, ThermoFisher Scientific)

using 500ng to 2 mg of total RNA, 1 mL of barcoded TCR-a or TCR-b specific reverse primer (0.1 mM final), 1 mL of dNTPs (0.5mM

final) and added with nuclease-free water to a total volume of 13 ml. This was incubated at 65�C for 5min, then on ice for 2 minutes

and followed by addition of 4 mL of 5X First strand buffer, 1 mL of DTT (5mM final), 1 mL of RNaseOUT Recombinant Ribonuclease

Inhibitor (40 units), and 1 mL of SuperScript IV reverse transcriptase (200 units). The reactionwas incubated at 56�C for 60min followed

by inactivation at 80�C for 10min. 1 mL of E. coliRNaseH (2 units) was added and incubated at 37�C for 20min to remove RNA from the

cDNA:RNA hybrids. The first strand cDNA was cleaned up using 1.8x Agencourt Ampure XP beads (Beckman Coulter) and eluted

with 21 mL of nuclease-free water (Ambion).

First-roundmultiplex PCR amplifications were set up in a total volume of 50 ml, with 20 mL of cDNA as template, 25 mL of Q5Hotstart

High-Fidelity DNA Polymerase Master Mix 2x (New England Biolabs) and tailed TCR-a or TCR-b forward primer set pools and sam-

ple-indexed reverse primers (0.2uM final concentration each). Multiplex forward primers target different TCR-a or TCR-b V-regions

and sequences are shown in Table S7. The sample-indexed reverse primers used were published previously (Bronner et al., 2014).

The following PCR programwas used: 30 s at 98�C, 25 cycles of 20 s at 98�C, 1 min at 55�C, and 1min at 72�C, with a final extension
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step of 2 min at 72�C. The PCR product was cleaned up using 0.75x Agencourt Ampure XP beads (Beckman Coulter) and eluted with

20 mL of nuclease-free water (Ambion).

First-round forward (TCR-a or TCR-b V-region-specific) PCR primers each contained a shared sequence to allow Illumina

sequencing adapters to be introduced with a second round PCR. The second-round PCR amplification step was performed on

the first round PCR amplicons to generate Illumina-ready sequencing libraries. 12 cycles of PCRs were performed and the product

was analyzed and quantitated using Agilent Bioanalyzer DNA 1000 chips. For each batch, equal nanomoles of each sample were

pooled, double SPRI size selected (0.5x and 0.7x) and stored at �20�C until sequencing. Libraries were batched and sequenced

on MiSeq sequencers (300bp paired-end reads).

TCR-sequencing and barcode filtering

MiSeq libraries were prepared using Illumina protocols and sequenced using 300bp paired-endedMiSeq (Illumina). RawMiSeq reads

were filtered for base quality (median Phred score > 32) using the QUASR program (https://sourceforge.net/projects/quasr/) (Watson

et al., 2013).MiSeq forward and reverse readsweremerged together if they contained identical overlapping region of > 50bp, or other-

wise discarded. Universal barcoded regions were identified in reads and orientated to read from V-primer to constant region primer.

The barcoded region within each primer was identified and checked for conserved bases (i.e., the T’s in NNNNTNNNNTNNNNT).

Primers and constant regions were trimmed from each sequence, and sequences were retained only if there was > 80% sequence

certainty between all sequences obtained with the same barcode, otherwise discarded. The constant region allele with highest

sequence similarity was identified by k-mermatching (where k = 10bp) to the reference constant region gene IMGT database (Lefranc,

2011), and sequence trimmed to give only the region of the sequence corresponding to the variable (V-D-J) regions, where constant

region usage information for each TCR was retained throughout the analysis. Sequences without complete reading frames and

non-TCR sequences were removed and only reads with significant similarity to reference TRBV or TRAV and J genes from the

IMGT database were retained using BLAST (Altschul et al., 1990). Sequences were annotated using IMGT. Sample clustering was

performed as previously described (Bashford-Rogers et al., 2013).

TCR repertoire generation and network analysis

The network generation algorithm and network properties were calculated as in Bashford-Rogers et al.(Bashford-Rogers et al.,

2013): each vertex represents a unique sequence, where relative vertex size is proportional to the number of identical reads. A clone

(cluster) refers to a group of identical related T cells, each containing TCRs with identical CDR3 regions and TCRV gene usage.

Repertoire parameters that were dependent on sequencing depth were generated by subsampling each sequencing sample to a

specified depth and the mean of 20 repeats of resulting parameters were calculated using the clonality measures. These measures

include 1) total repertoire clonality (vertex & cluster Gini Indices), and 2) mean cluster sizes, (3) largest cluster sizes calculated as

follows:

1) Total repertoire clonality, measured by vertex & cluster Gini Indices are defined in Bashford-Rogers et al. (Bashford-Rogers

et al., 2013), calculated from the distribution of the number of unique RNA molecules per vertex and the distribution of the

number of unique TCRs per cluster, respectively. These were all calculated per 1000 read subsample of the each total TCR

repertoire.

2) Mean cluster sizes (MCS) were within each subsample for the total TCR repertoire were calculated as follows for any given

sample Y:
MCSðSample YÞ=
P

N TCRs per cluster in subsample
P

Total number of clusters in subsample
x100

3) Largest cluster sizes (LCS) were within each subsample for the total TCR repertoire were calculated as follows for any given

sample Y:
MCSðSample YÞ= MaxðN TCRs per cluster in subsampleÞ
P

Total number of clusters in subsample
x100
Clonal overlap analysis
Clonal groups defined as TCRs sharing same V and J gene usages and identical CDR3 region sequence (nucleotide). Public TCRs

were defined as TCR clusters that were shared between 2 or more T cell samples from unrelated individuals within this dataset and

compared to the Adaptive Biotechnology database (Dean et al., 2015). The clonal overlap coefficient, describing the overlap between

samples, was calculated either considering the whole TCR datasets, or with the public TCR clones removed.

Clonal overlap, Oði; jÞ; between any two samples, i and j was calculated by

Oði; jÞ= Ci;j

1 =

2 ðCi +CjÞ
Where Cx is the number of clusters in sample x and Ci;j is the number of clusters shared between samples i and j. To account for

differences in sequencing depth between samples, each sample was subsampled each sequencing sample to a specified depth

(1000 TCRs), and the mean of 20 repeats per sample of resulting clonal overlap was calculated.
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Similarity heatmaps

Similarity heatmaps were produced using Jaccard index calculated between each pair of metastases, using unique amino acids

TCRs (CDR3s), for the alpha and beta chains. The Jaccard index was calculated using the ecological toolkit of the vegan R package,

and the heatmaps were produced using R pheatmap package. Clustering of the heatmaps was done by the standard R hclust

(hierarchical clustering) method, using the ‘‘complete’’ option. The comparison of the hclusts objects was done by the cophenetic

correlation, using the dendextend package (Galili, 2015).

The data were reshuffled to assign the TCR sequences to ‘‘randomized’’ metastases, and then on the reshuffled repertoire clus-

tering by the Jaccard index was performed. This randomization was done 100 times. In this setting where there are 100 clusterings

performed on the different randomizations and these were compared then between themselves, and to the original clustering of the

biological data. To compare the randomized and ‘real’ trees we used the cophenetic correlation, and the Robinson-Foulds metric.

The comparison of the Jaccard clustering trees with the genetic trees was done by using the cophenetic definition for edge-

weighted trees. In this version of the cophenetic, the distance between each pair of nodes is the sum of the edges weights along

the path connecting these pair of nodes.

Correlation of TPM of CDR3 genes and sum of TCR reads

From the RNASeqwe extracted the TPM values of four genes that encode for the four different parts of the CD3 complex. These genes

are CD3D, CD3G, CD3E and the zeta chain CD247 (Ensembl codes: ENSG00000167286, ENSG00000160654, ENSG00000198851,

ENSG00000198821, respectively). For each sample, we calculated twomeasurements: 1) the sumof theRNASeqTPMvalues for these

four genes; 2) from the TCR repertoires - the sum of the number of alpha chains and beta chains for each sample. We computed the

Pearson correlation between the log10 values of these two measurements across all samples. The correlation and p value were

computed using R’s cor.test method.

Histopathological analyses

Tissue microarrays (TMA) were prepared using duplicate 1 mm cores extracted from formalin-fixed paraffin-embedded blocks con-

taining material from the individual tumors and metastases.

Immunohistochemistry (IHC) was conducted for CD68, CD3, CD19, FOXP3, CD8, IL3RA, IDO1, CD4, CD56, CD1A, Mast Cell

Tryptase, CD45RO, CD38, PDL1, ER, PR, and HER2 proteins. Details of reagents and protocols for IHC are provided in Key

Resources Table.

Stains weremanually quantified by counting the absolute number or the percentage of positive stained cells. ER, PR statuses were

assessed based on IHC applied to TMAs and scored using the percentage of positive tumor cells and intensity of staining (AllRead

score). Herceptest was performed for all samples according to ASCO/CAP Guidelines (Wolff et al., 2013).

Fluorescence in situ hybridization (FISH) (HER2-to-CEP17 ratio and gene copy number) for HER2 status was performed as

previously described for all samples (Wolff et al., 2013). Positive HER2 amplification was considered when FISH ratio was higher

than 2.2 or HER2 gene copy greater than 6.0.

Digital pathology

Whole slide images (either FFPE sections or frozen sections from tissue samples used for RNA extraction) were analyzed using

CellExtractor v1.0, an open-source platform developed for high throughput analysis of histopathological images. The code was writ-

ten in Python and used the OpenCV, i.e., an open source computer vision and machine learning software library written in C++, and

the OpenSlide library. Full-face H&E scanned images were analyzed and divided into several sub-regions. Each sub-region is pro-

cessed and segmented to compute cellular features such as centroids, shape descriptors, and pixel intensities. These features were

used to train a support-vector machine (SVM) based classifier to identify cancer cells, stromal cells, and lymphocytes based on a

training set of objects selected by a pathologist (W.C.) of approximately 1,000 objects for each category. Finally, based on these clas-

ses descriptive statistical parameters such as cellular fractions and densities were estimated. For each detected cell density was

obtained based on counting the number of nearest neighbor approach, i.e., the density within the distance to the Nth nearest

neighbor calculated as follow: Sigma_N (pixel̂ [-2]) = N/(pi* d_N̂ 2), Where d_N is the distance to the Nth nearest neighbor within a

density-defining population. A value of N = 50was used in order to estimate the density parameter (see (Ali et al., 2016b) for a detailed

description).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R version 3.2.2 and associated packages (Key Resources Table). The statistical details

of experiments including the exact value of n in terms of number of samples for a given patient, the experimental method and specific

statistical tests employed are reported in the relevant section, Results, Figures and Figure Legends, and Supplementary tables. For a

given test (i.e., Wilcoxon rank sum, test chi-square test) significance was defined if a p value was less than 0.05.

DATA AND SOFTWARE AVAILABILITY

Software
Customscripts to run the analysesdescribed in themanuscript are available at https://github.com/cclab-brca/MET-breast-landscapes/
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Data Resources
Sequence data has been deposited at the European Genome-phenome Archive (EGA), which is hosted by the EBI and the CRG,

under accession number EGAS00001002703. Further information about EGA can be found on https://ega-archive.org. The

European Genome-phenome Archive of human data consented for biomedical research (https://idp.nature.com/authorize?

response_type=cookie&client_id=grover&redirect_uri=http%3A%2F%2Fwww.nature.com%2Fng%2Fjournal%2Fv47%2Fn7%2F

full%2Fng.3312.html). Supplemental Information was deposited on Mendeley at https://doi.org/10.17632/6cv77bry6m.1
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