1,507 research outputs found

    Distribution of Mutual Information

    Full text link
    The mutual information of two random variables i and j with joint probabilities t_ij is commonly used in learning Bayesian nets as well as in many other fields. The chances t_ij are usually estimated by the empirical sampling frequency n_ij/n leading to a point estimate I(n_ij/n) for the mutual information. To answer questions like "is I(n_ij/n) consistent with zero?" or "what is the probability that the true mutual information is much larger than the point estimate?" one has to go beyond the point estimate. In the Bayesian framework one can answer these questions by utilizing a (second order) prior distribution p(t) comprising prior information about t. From the prior p(t) one can compute the posterior p(t|n), from which the distribution p(I|n) of the mutual information can be calculated. We derive reliable and quickly computable approximations for p(I|n). We concentrate on the mean, variance, skewness, and kurtosis, and non-informative priors. For the mean we also give an exact expression. Numerical issues and the range of validity are discussed.Comment: 8 page

    Winnerless competition between sensory neurons generates chaos: A possible mechanism for molluscan hunting behavior

    Full text link
    © 2002 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.In the presence of prey, the marine mollusk Clione limacina exhibits search behavior, i.e., circular motions whose plane and radius change in a chaotic-like manner. We have formulated a dynamical model of the chaotic hunting behavior of Clione based on physiological in vivo and in vitroexperiments. The model includes a description of the action of the cerebral hunting interneuron on the receptor neurons of the gravity sensory organ, the statocyst. A network of six receptor model neurons with Lotka–Volterra-type dynamics and nonsymmetric inhibitory interactions has no simple static attractors that correspond to winner take all phenomena. Instead, the winnerless competition induced by the hunting neuron displays hyperchaos with two positive Lyapunov exponents. The origin of the chaos is related to the interaction of two clusters of receptor neurons that are described with two heteroclinic loops in phase space. We hypothesize that the chaotic activity of the receptor neurons can drive the complex behavior of Clione observed during hunting.Support for this work came from NIH Grant No. 2R01 NS38022- 05A1. P.V. acknowledges support from MCT BFI2000-0157. M.R. acknowledges support from U.S. Department of Energy Grant No. DE-FG03-96ER14592

    Liberty, Equality and Not Too Much Fraternity: An Experience in Practical Application of Liberal Education Teaching Techniques

    Get PDF
    The paper explores an experience in practical application of liberal education teaching techniques. We describe the most frequently used techniques and present sample classroom assignments based on this framework. We also discuss the opportunities and limitations provided by the use of these methods in a classroom setting. Keywords: teaching techniques, liberal education, writing and analytical reading, humanities teaching

    Generation linewidth of an auto-oscillator with a nonlinear frequency shift: Spin-torque nano-oscillator

    Full text link
    It is shown that the generation linewidth of an auto-oscillator with a nonlinear frequency shift (i.e. an auto-oscillator in which frequency depends on the oscillation amplitude) is substantially larger than the linewidth of a conventional quasi-linear auto-oscillator due to the renormalization of the phase noise caused by the nonlinearity of the oscillation frequency. The developed theory, when applied to a spin-torque nano-contact auto-oscillator, predicts a minimum of the generation linewidth when the nano-contact is magnetized at a critical angle to its plane, corresponding to the minimum nonlinear frequency shift, in good agreement with recent experiments.Comment: 4 pages, 2 figure

    Dynamical Encoding by Networks of Competing Neuron Groups: Winnerless Competition

    Get PDF
    Following studies of olfactory processing in insects and fish, we investigate neural networks whose dynamics in phase space is represented by orbits near the heteroclinic connections between saddle regions (fixed points or limit cycles). These networks encode input information as trajectories along the heteroclinic connections. If there are N neurons in the network, the capacity is approximately e(N-1)!, i.e., much larger than that of most traditional network structures. We show that a small winnerless competition network composed of FitzHugh-Nagumo spiking neurons efficiently transforms input information into a spatiotemporal output

    Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics

    Full text link
    This paper is devoted to estimates of the exponential decay of eigenfunctions of difference operators on the lattice Z^n which are discrete analogs of the Schr\"{o}dinger, Dirac and square-root Klein-Gordon operators. Our investigation of the essential spectra and the exponential decay of eigenfunctions of the discrete spectra is based on the calculus of so-called pseudodifference operators (i.e., pseudodifferential operators on the group Z^n) with analytic symbols and on the limit operators method. We obtain a description of the location of the essential spectra and estimates of the eigenfunctions of the discrete spectra of the main lattice operators of quantum mechanics, namely: matrix Schr\"{o}dinger operators on Z^n, Dirac operators on Z^3, and square root Klein-Gordon operators on Z^n

    Anomalous phase shift in a Josephson junction via an antiferromagnetic interlayer

    Full text link
    The anomalous ground state phase shift in S/AF/S Josephson junctions in the presence of the Rashba SO-coupling is predicted and numerically investigated. It is found to be a consequence of the uncompensated magnetic moment at the S/AF interfaces. The anomalous phase shift exhibits a strong dependence on the value of the SO-coupling and the sublattice magnetization with the simultaneous existence of stable and metastable branches. It depends strongly on the orientation of the Neel vector with respect to the S/AF interfaces via the dependence on the orientation of the interface uncompensated magnetic moment, what opens a way to control the Neel vector by supercurrent in Josephson systems.Comment: published versio

    Nonlinear dynamics in one dimension: On a criterion for coarsening and its temporal law

    Full text link
    We develop a general criterion about coarsening for a class of nonlinear evolution equations describing one dimensional pattern-forming systems. This criterion allows one to discriminate between the situation where a coarsening process takes place and the one where the wavelength is fixed in the course of time. An intermediate scenario may occur, namely `interrupted coarsening'. The power of the criterion lies in the fact that the statement about the occurrence of coarsening, or selection of a length scale, can be made by only inspecting the behavior of the branch of steady state periodic solutions. The criterion states that coarsening occurs if lambda'(A)>0 while a length scale selection prevails if lambda'(A)<0, where lambdalambda is the wavelength of the pattern and A is the amplitude of the profile. This criterion is established thanks to the analysis of the phase diffusion equation of the pattern. We connect the phase diffusion coefficient D(lambda) (which carries a kinetic information) to lambda'(A), which refers to a pure steady state property. The relationship between kinetics and the behavior of the branch of steady state solutions is established fully analytically for several classes of equations. Another important and new result which emerges here is that the exploitation of the phase diffusion coefficient enables us to determine in a rather straightforward manner the dynamical coarsening exponent. Our calculation, based on the idea that |D(lambda)|=lambda^2/t, is exemplified on several nonlinear equations, showing that the exact exponent is captured. Some speculations about the extension of the present results to higher dimension are outlined.Comment: 16 pages. Only a few minor changes. Accepted for publication in Physical Review
    corecore