1,806 research outputs found

    Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics

    Full text link
    This paper is devoted to estimates of the exponential decay of eigenfunctions of difference operators on the lattice Z^n which are discrete analogs of the Schr\"{o}dinger, Dirac and square-root Klein-Gordon operators. Our investigation of the essential spectra and the exponential decay of eigenfunctions of the discrete spectra is based on the calculus of so-called pseudodifference operators (i.e., pseudodifferential operators on the group Z^n) with analytic symbols and on the limit operators method. We obtain a description of the location of the essential spectra and estimates of the eigenfunctions of the discrete spectra of the main lattice operators of quantum mechanics, namely: matrix Schr\"{o}dinger operators on Z^n, Dirac operators on Z^3, and square root Klein-Gordon operators on Z^n

    Liberty, Equality and Not Too Much Fraternity: An Experience in Practical Application of Liberal Education Teaching Techniques

    Get PDF
    The paper explores an experience in practical application of liberal education teaching techniques. We describe the most frequently used techniques and present sample classroom assignments based on this framework. We also discuss the opportunities and limitations provided by the use of these methods in a classroom setting. Keywords: teaching techniques, liberal education, writing and analytical reading, humanities teaching

    Comparison of the experimental data for the Casimir pressure with the Lifshitz theory at zero temperature

    Full text link
    We perform detailed comparison of the experimental data of the experiment on the determination of the Casimir pressure between two parallel Au plates with the theoretical values computed using the Lifshitz formula at zero temperature. Computations are done using the optical data for the complex index of refraction of Au extrapolated to low frequencies by means of the Drude model with both most often used and other suggested Drude parameters. It is shown that the experimental data exclude the Lifshitz formula at zero temperature at a 70% confidence level if the Drude model with most often used values of the parameters is employed. If other values of the Drude parameters are used, the Lifshitz formula at zero frequency is experimentally excluded at a 95% confidence level. The Lifshitz formula at zero temperature combined with the generalized plasma-like model with most often used value of the plasma frequency is shown to be experimentally consistent. We propose a decisive experiment which will shed additional light on the role of relaxation properties of conduction electrons in the Casimir effect.Comment: 22 pages, 6 figures; Phys. Rev. B, to appea

    Pattern formation without heating in an evaporative convection experiment

    Get PDF
    We present an evaporation experiment in a single fluid layer. When latent heat associated to the evaporation is large enough, the heat flow through the free surface of the layer generates temperature gradients that can destabilize the conductive motionless state giving rise to convective cellular structures without any external heating. The sequence of convective patterns obtained here without heating, is similar to that obtained in B\'enard-Marangoni convection. This work present the sequence of spatial bifurcations as a function of the layer depth. The transition between square to hexagonal pattern, known from non-evaporative experiments, is obtained here with a similar change in wavelength.Comment: Submitted to Europhysics Letter

    Possibility of measuring the thermal Casimir interaction between a plate and a cylinder attached to a micromachined oscillator

    Get PDF
    We investigate the possibility of measuring the thermal Casimir force and its gradient in the configuration of a plate and a microfabricated cylinder attached to a micromachined oscillator. The Lifshitz-type formulas in this configuration are derived using the proximity force approximation. The accuracy for the obtained expressions is determined from a comparison with exact results available in ideal metal case. Computations of the thermal correction to both the Casimir force and its gradient are performed in the framework of different theoretical approaches proposed in the literature. The correction to the Casimir force and its gradient due to lack of parallelism of the plate and cylinder is determined using the nonmultiplicative approach. The error introduced in the theory due to the finite length of the cylinder is estimated. We propose that both static and dynamic experiments measuring the thermal Casimir interaction between a cylinder and a plate using a micromachined oscillator can shed additional light on the thermal Casimir force problem. Specifically, it is shown that the static experiment is better adapted for the measurement of thermal effects.Comment: 29 pages, 4 figures, 1 table; minor additions are made in accordance to the version accepted for publication; to appear in Phys. Rev.

    Essential spectra of difference operators on \sZ^n-periodic graphs

    Full text link
    Let (\cX, \rho) be a discrete metric space. We suppose that the group \sZ^n acts freely on XX and that the number of orbits of XX with respect to this action is finite. Then we call XX a \sZ^n-periodic discrete metric space. We examine the Fredholm property and essential spectra of band-dominated operators on lp(X)l^p(X) where XX is a \sZ^n-periodic discrete metric space. Our approach is based on the theory of band-dominated operators on \sZ^n and their limit operators. In case XX is the set of vertices of a combinatorial graph, the graph structure defines a Schr\"{o}dinger operator on lp(X)l^p(X) in a natural way. We illustrate our approach by determining the essential spectra of Schr\"{o}dinger operators with slowly oscillating potential both on zig-zag and on hexagonal graphs, the latter being related to nano-structures

    Control of the Casimir force by the modification of dielectric properties with light

    Full text link
    The experimental demonstration of the modification of the Casimir force between a gold coated sphere and a single-crystal Si membrane by light pulses is performed. The specially designed and fabricated Si membrane was irradiated with 514 nm laser pulses of 5 ms width in high vacuum leading to a change of the charge-carrier density. The difference in the Casimir force in the presence and in the absence of laser radiation was measured by means of an atomic force microscope as a function of separation at different powers of the absorbed light. The total experimental error of the measured force differences at a separation of 100 nm varies from 10 to 20% in different measurements. The experimental results are compared with theoretical computations using the Lifshitz theory at both zero and laboratory temperatures. The total theoretical error determined mostly by the uncertainty in the concentration of charge carriers when the light is incident is found to be about 14% at separations less than 140 nm. The experimental data are consistent with the Lifshitz theory at laboratory temperature, if the static dielectric permittivity of high-resistivity Si in the absence of light is assumed to be finite. If the dc conductivity of high-resistivity Si in the absence of light is included into the model of dielectric response, the Lifshitz theory at nonzero temperature is shown to be experimentally inconsistent at 95% confidence. The demonstrated phenomenon of the modification of the Casimir force through a change of the charge-carrier density is topical for applications of the Lifshitz theory to real materials in fields ranging from nanotechnology and condensed matter physics to the theory of fundamental interactions.Comment: 30 pages, 10 figures, 2 table

    A Simple Theory of Condensation

    Full text link
    A simple assumption of an emergence in gas of small atomic clusters consisting of cc particles each, leads to a phase separation (first order transition). It reveals itself by an emergence of ``forbidden'' density range starting at a certain temperature. Defining this latter value as the critical temperature predicts existence of an interval with anomalous heat capacity behaviour cpΔT1/cc_p\propto\Delta T^{-1/c}. The value c=13c=13 suggested in literature yields the heat capacity exponent α=0.077\alpha=0.077.Comment: 9 pages, 1 figur

    Penta-Hepta Defect Motion in Hexagonal Patterns

    Full text link
    Structure and dynamics of penta-hepta defects in hexagonal patterns is studied in the framework of coupled amplitude equations for underlying plane waves. Analytical solution for phase field of moving PHD is found in the far field, which generalizes the static solution due to Pismen and Nepomnyashchy (1993). The mobility tensor of PHD is calculated using combined analytical and numerical approach. The results for the velocity of PHD climbing in slightly non-optimal hexagonal patterns are compared with numerical simulations of amplitude equations. Interaction of penta-hepta defects in optimal hexagonal patterns is also considered.Comment: 4 pages, Postscript (submitted to PRL

    Rigorous approach to the comparison between experiment and theory in Casimir force measurements

    Get PDF
    In most experiments on the Casimir force the comparison between measurement data and theory was done using the concept of the root-mean-square deviation, a procedure that has been criticized in literature. Here we propose a special statistical analysis which should be performed separately for the experimental data and for the results of the theoretical computations. In so doing, the random, systematic, and total experimental errors are found as functions of separation, taking into account the distribution laws for each error at 95% confidence. Independently, all theoretical errors are combined to obtain the total theoretical error at the same confidence. Finally, the confidence interval for the differences between theoretical and experimental values is obtained as a function of separation. This rigorous approach is applied to two recent experiments on the Casimir effect.Comment: 10 pages, iopart.cls is used, to appear in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005
    corecore