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Pattern formation without heating
in an evaporative convection experiment
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PACS. 47.54.+r – Pattern selection; pattern formation.

PACS. 47.20.Dr – Surface-tension-driven instability.

PACS. 47.20.Hw – Morphological instability; phase changes.

Abstract. – We present an evaporation experiment in a single fluid layer reproducing con-
ditions of volatile fluids in nature. When latent heat associated to the evaporation is large
enough, the heat flow through the free surface of the layer generates temperature gradients
that can destabilize the conductive motionless state giving rise to convective cellular structures
without any external heating. Convective cells can be then observed in the transient range of
evaporation from an initial depth value to a minimum threshold depth, after which a conduc-
tive motionless state appears until the evaporation finishes with an unwetting sequence. The
sequence of convective patterns obtained here without heating is similar to that obtained in
Bénard-Marangoni convection. This work presents the sequence of spatial bifurcations as a
function of the layer depth. The transition between square-to-hexagonal pattern, known from
non-evaporative experiments, is obtained here with a similar change in wavelength.

Introduction. – Pattern formation in different areas of knowledge has received great at-
tention in the last decade [1,2]. Interest in this kind of research arises from the general interest
in understanding nature and also from requirements of industrial processes like painting, film
drying or crystal growth, where pattern formation knowledge plays a fundamental role. Pat-
tern formation during evaporation is a common phenomena that can be frequently observed in
nature. Natural convection self-generated by the evaporation of a thin layer of water normally
leaves the brand of its individual convective cells in the bottom clay.

Since the first rigorous work devoted to study pattern formation in fluids [3], the existence
of cellular structures was recognized to be linked to surface tension and buoyancy. Experimen-
tal and theoretical studies where movements are generated mostly by interfacial forces [4, 5]
have increased in the last years [6, 7]. Generally, convective movements originated in surface
tension gradients are known as Marangoni or Bénard-Marangoni (BM) convection. In evapo-
rative convection there are two main physical mechanisms of instability relating surface tension
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gradients, one with a change in the composition or concentration, which is called thermosolu-
tal convection, and the other with the local dependence of surface tension on temperature or
thermocapillary convection.

In the first one, experiments are normally performed using alcohols or other evaporative flu-
ids like polymers in solution, where the proportion between solute and solvent can be changed
by evaporation [8,9]. As an example, Zhang and Chao [10] presented an experimental work re-
porting the onset of patterns considering heating (or even cooling) and evaporation using this
kind of fluids. They used a thin liquid layer of alcohol (among other liquids) heated from below
and the convective structures have been observed by seeding the fluid with aluminum powder.

In pure thermocapillary convection, temperature is involved directly and movements are
now related with local temperature dependence of surface tension. Hydrodynamic instabilities
grow as in the Bénard original works, but, to our knowledge, previous experimental results
on pattern formation in evaporation of pure fluids do not exist. Recently, Maillard et al. [11]
presented a microscopic evidence of unusual patterns (micron-sized objects like rings and
hexagonal arrays) that they consider patterns of Bénard-Marangoni convection driven by
surface tension gradients. Even if the work is not performed with an evaporative fluid, it
certifies that interest of material sciences in the production and control of well-ordered arrays
of this kind of cells at micron scale is increasing.

Regarding the evaporation properties, there is a family of experimental and theoretical
studies aiming to determine constants like the Sherwood number (the dimensionless rate of
evaporation) under different conditions [12,13], or the temperature profile near the evaporating
surface [14, 15]. Normally, pattern formation is not specific and it must be said that the
simultaneous measurement of all parameters involved is normally a complex task.

In all the above-mentioned experiments, patterns are composed mostly by irregular cells.
Normally, the aspect ratio is large (we call aspect ratio Γ, the ratio between the horizontal
characteristic dimension and the depth). In the previous experiments, to our knowledge, no
attempts have been made to compare evaporative experiments with theory in the frame of
pattern formation. The present work is the first experiment devoted to check the convective
pattern sequence appearing in an evaporation layer without heating and to compare it with
non-evaporative convection.

The experiment. – It is well known from thermodynamics that equilibrium between a
fluid and its vapor phase is bidimensional. The equilibrium states are all on a line in the plane
defined by pressure p, and temperature T . In a closed environment with a layer of volatile
fluid, the fluid evaporates until the vapor phase reaches the vapor pressure corresponding
to the fluid temperature. When the equilibrium pressure is reached evaporation stops. If a
part of the atmosphere composed by air plus vapor is removed (i.e. blowing slightly), the
fluid tends to evaporate continuously until it recovers its equilibrium value. If the volume
of air is replaced at the same rate that the mixture of vapor plus air is removed, a constant
evaporation rate can be reached. Under these conditions, evaporation follows until all the
liquid layer disappears. This a common situation in nature when the wind removes the vapor
phase in equilibrium with a fluid and makes a volatile layer completely evaporate.

In the experiment here presented we reproduce these conditions introducing all the set-up
in a closed box and evacuating a small part of the total volume of the inner box atmosphere.
A scheme of the system can be seen in fig. 1a.

The fluid used was hexametildisiloxane (C6H18OSi2) and it was chosen because it is a pure
volatile fluid at atmospheric pressure (Prandtl number = 14.5). Properties of this and other
silicon oils can be obtained from different handbooks [16, 17]. It was placed in a cylindrical
container on a computer-controlled analytical balance in order to measure in real time the
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Fig. 1 – (a) Scheme of the experiment: a cylindrical cell is mounted in a closed environment, where
a very small flow refreshes air and vapor pressure. An infrared sensor checks the temperature near
the free surface and a thermocouple measures the temperature near the bottom of the fluid layer
Tb. (b) The weak pressure unbalance induced by the controlled air flow drives an almost linear
evaporation rate until the drying process begins.

evaporated mass (with a resolution of 0.001 g). The atmosphere inside the box, composed by
the vapor pressure of the fluid plus air, was kept at a constant pressure by refilling with a
laminar flow of new air at the same temperature and at the same rate of evacuation. This
stationary state, slightly out of equilibrium, generates a constant rate of evaporation. The
evaporation rate J is defined by the rate at which the vapor pressure is removed from the gas
phase and by the equilibrium temperature of the fluid phase with the atmosphere.

There is no external heating or cooling in this experiment. The latent heat is the re-
sponsible for convection. The pool is left to reach its own thermal equilibrium with the
environment in a time that depends on its thermal conductivity. Thermal exchanges are re-
stricted to different parts of the system at the interior of the box. The box with all the system
is placed in a conditioned-air room in order to keep also the external temperature constant,
Tatmosphere = 20 ◦C. The latent heat extracted from the fluid is subsequently recovered from
the surroundings of the layer. Two extreme conditions of conductivity had been used in the
container of the fluid to check their influence. One was a good conductor aluminum cell and
the other was a cell with equal dimensions and geometry but constructed with a thermal
insulating material. We did not find significative differences in the patterns. In the experi-
ment, patterns appear if the evaporation rate and the fluid depth are adequate. To obtain
ordered patterns, the evaporation rate J must be relatively low. In a typical sequence J
was controlled as 0.0010 g/s < J < 0.0015 g/s. Before the unwetting (or drying) process and
without refilling the cell with new fluid, the depth of the layer changes linearly from a fixed
and arbitrary initial value to zero, independently of what kind of patterns appear.

The depth of the liquid layer is calculated from the mass, the volume of the cylindrical
container (area = 80.12 cm2), and the fluid density (0.760 g/cc). A typical evaporation rate
obtained in the experiment can be seen in fig. 1b. It is interesting to note that only when the
drying process of the layer begins, does a sudden change in the evaporation rate appear.

Pattern dynamics. – Patterns are observed by usual shadowgraph techniques described
in other experiments by the authors [18]. The transient sequence of patterns shown in fig. 2
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Fig. 2 – Sequence of patterns obtained as a function of decreasing depth and their FFT spectra.
(a) d = 0.8mm; (b) d = 0.6mm; (d) d = 0.5mm; (e) d = 0.4mm.

has been obtained when a linear change in depth with time is performed in the experiment. We
used an image processing system to capture images that are processed and stored together
with the corresponding outputs of the data acquisition system. Images and data files of
temperatures, depths and evaporation rates obtained at the same time are then used to obtain
the results here presented. The error in time synchronism of all the system is negligible. To
control the results, each experiment has been performed more than 20 times. It was verified
that if the evaporated mass is refilled in the pool keeping the depth constant, a stationary
pattern can be obtained. As shown in fig. 1b, the change in depth at a fixed evaporation
rate fits an almost linear function. The second-order coefficient (deviation from linearity) is
obtained reproducibly and is two orders of magnitude lower than the linear coefficient.

The sequence begins when the cell is filled with a fixed and arbitrary initial depth of fluid
(usually we used d0 = 2 mm). Considering the diameter of the cell (D = 101 mm), we have
an initial aspect ratio of Γ ≈ 50. Initially, convective movements are turbulent. Movements
are mostly formed by buoyant plumes which are born at the bottom of the cell and appear
randomly distributed in space and time. When the layer depth goes under a certain value,
typically d = 0.8 mm, a pattern formed by a few irregular and large cells fills the pool. By
lowering the layer depth, the size of the cells becomes smaller and consequently the number
of disordered cells increases (fig. 2a). The planform changes continuously with depth to a
pattern composed by tetragonal cells (fig. 2b).

If depth goes down to approximately d = 0.5 mm, the pattern composed by domains of
tetragonal cells changes to another of hexagonal cells as in fig. 2d, that exists until a critical
depth dc is reached. When the minimum depth is reached, the entire pattern disappears
until that “drying process” begins. Drying means destruction of the layer and begins when
a long-wavelength instability [19, 20] appears, giving place to another different stage in the
experiment. The FFT sequence displayed in the insets of fig. 2 shows the existence of a
well-defined wave number but without a preferred direction in the phase plane.

Figure 3a displays a typical data file of the mean wavelength against depth in a run.
Following the idea introduced by Merckt and Bestehorn [21], we calculate the supercriticality
as a function of the square of the fluid depth ε = d2−d2

c
d2
c

as the parameter distance from the
critical depth dc. The results obtained are in good agreement with those reported in ref. [21].

In order to compare our results with those obtained in a non-evaporative convection with
heating [6], we verify the critical depth calculating dc from the critical Marangoni number
predicted by the linear theory, using ∆T = 0.1 ◦C measured between Tb and the free surface
(a value within the limit of our experimental resolution). We obtain a rough critical depth



816 EUROPHYSICS LETTERS

Fig. 3 – (a) Mean dimensional wavelength as a function of the liquid depth. Note the existence of a
transition zone corresponding to the square-to-hexagon transition. (b) Dimensionless wave number
as a function of the supercriticality. The fits are just a guide for the eye.

dc = 0.3 mm. Within our optical test resolution, we measure the same critical depth dc =
0.3 ± 0.02 mm, for all the evaporation rate studied.

Experiments on the square-to-hexagon transition (SHT) have been only recently reported [19,
20]. In agreement with the results reported in ref. [20], we observed that the wave number of
the pattern at the transition depended strongly on the history of the experimental sequence.
In [20] the wavelength at the transition of hexagons to squares (when ε is increased) is 10%
lower than the wavelength when the supercriticality is diminished. In our experiment, such
hysteresis effect cannot be measured, but we observe a “jump” in the dimensionless wave-
length when the SHT takes place (fig. 3). Note from fig. 3a that the average wavelength of the
cellular pattern remains almost constant for a depth in the range 0.49 mm < d < 0.56 mm.
This fact implies approximately a jump of 5% in the wavelength normalized by the depth of
the fluid. Widening this depths interval, we observed simultaneously domains of squares and
hexagons as in ref. [19].

The dimensionless wave number kc = 1.25 corresponding to the onset (fig. 3b), is in dis-
agreement with the predicted value for the linear theory [22, 23] which is kc = 1.97. This
disagreement can be related with the fact that the convective pattern at threshold is not
stationary but has a characteristic lifetime related with the evaporation rate J and the hori-
zontal diffusion time. A more advanced experimental set-up, where the liquid depth remains
almost constant during a horizontal diffusion time, has been implemented in order to study
the critical wave number at the onset. These results will be reported elsewhere.

Other outputs of the experiment are the local temperatures against time (or depth). To
measure local temperatures at different depths, sub-millimeter thermocouples are mounted
laterally in a small hole on a plexiglass ring to avoid a pattern perturbation. Plexiglass is
a thermal insulator having a similar conductivity to the silicon oil, so temperature recov-
ering from the environment is obtained principally from the aluminum disk placed below.
An infrared sensor (IR) is used to measure the temperature at the free surface. From the
thermocouple put inside the cell, we determine temperature dynamics. Two regimes can be
identified: a) when the flow is turbulent, the temperature difference between Tb and the atmo-
sphere rises to a limit value between −0.8 ◦C and −1.0 ◦C and b) when the stationary pattern
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stabilizes, this difference decreases to −0.4 ◦C and remains almost constant to the unwetting
process. Finally, the temperature goes up to the initial equilibrium value. Latent heat brings
the system out of thermal equilibrium. As the heat in the fluid bulk flows mainly from below,
the bottom temperature is lower than the ambient temperature. But the temperature at the
free surface of the fluid is even lower.

Discussion. – In this experiment a typical sequence of ordered patterns appears similar
to a Bénard-Marangoni convection heated from below. As the sequence appears here without
any external heating, only very few of the previously existing models describing evaporation
patterns are useful. The typical cellular patterns obtained can be observed and measured
reproducibly. As during the evaporation the fluid layer depth goes down, the control param-
eter is consequently lower and the sequence obtained is inverted with respect to the normal
BM convection.

The first effect produced by evaporation in our experiment is to create the vertical temper-
ature gradient by latent heat. So we do not need any externally imposed heating or cooling
flow. The second one is to increase the thermal conductivity in the evaporating surface. This
means to increase the cooling in the cold surface points and the heating in the hot surface ones.
This in turn increases the effective Biot number in the models. It can be verified experimen-
tally by observing that the system becomes strongly turbulent when the evaporating rate is
increased too much. To have ordered patterns the mass flow must be controlled as in our case.

Normally, the theoretical models for this kind of experiments consider an externally im-
posed heating or cooling flow (from below or from above). Very recently, a theoretical work of
Merkt and Bestehorn [21] appeared, where this sequence is obtained without external driving.
They constructed two theoretical models, one is the two-layer (fluid and gas) approximation,
where they perform a linear stability analysis. The other is a one-layer approximation with
a large effective Biot number. With the second one they found that thresholds obtained in
non-evaporating oils with a fixed Prandtl number fluid (Pr = 10) are significatively lowered
with increasing the Biot number. The pattern morphology is reproduced and the sequence of
bifurcations obtained in our experiment is then reproduced numerically.

Conclusions. – In summary, we presented here the first experimental report of ordered
spatial bifurcations produced only by evaporation and a time-resolved information of the rele-
vant variables. The sequence of pattern described is the same as in non-evaporative convection
for a control parameter increasing its value. The main features of the experiment can be ex-
plained by a recent theory [21]. We demonstrate that patterns exist in a well-defined range
of depths and also that the transition between squares to hexagons appears as clearly as in
non-evaporative convection, with a change in the dimensionless wave number similar to the
value reported for non-evaporative convection. The tetragonal structure appears when con-
vection is more important to the heat transport (higher depth) and this result confirms also
that tetragonal cells seem to be more efficient than hexagonal ones in heat transport, as was
assumed in [19].
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