7 research outputs found

    Early emission from type Ia supernovae

    Full text link
    A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of SNe of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak-shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of 1D numerical DDT simulations. Our analysis predicts a thousand second long UV/optical flash with a luminosity of ~1 to 3*1e39 erg/s. Lower luminosity corresponds to faster (turbulent) deflagration velocity. The predicted luminosity of the UV flash is an order of magnitude lower than that of earlier estimates, and is expected to be strongly suppressed at times longer than an hour due to the deviation from pure radiation domination.Comment: 10 pages, 4 figure

    Atom in a coherently controlled squeezed vacuum

    Get PDF
    A broadband squeezed vacuum photon field is characterized by a complex squeezing function. We show that by controlling the wavelength dependence of its phase it is possible to change the dynamics of the atomic polarization interacting with the squeezed vacuum. Such a phase modulation effectively produces a finite range temporal interaction kernel between the two quadratures of the atomic polarization yielding the change in the decay rates as well as the appearance of additional oscillation frequencies. We show that decay rates slower than the spontaneous decay rate can be achieved even for a squeezed bath in the classic regime. For linear and quadratic phase modulations the power spectrum of the scattered light exhibits narrowing of the central peak due to the modified decay rates. For strong phase modulations side lobes appear symmetrically around the central peak reflecting additional oscillation frequencies.Comment: 4 pages, 4 figure

    The early UV/Optical emission from core-collapse supernovae

    Full text link
    We derive a simple approximate model describing the early, hours to days, UV/optical supernova emission, which is produced by the expansion of the outer <~0.01 solar mass part of the shock-heated envelope, and precedes the optical emission driven by radioactive decay. Our model includes an approximate description of the time dependence of the opacity (due mainly to recombination), and of the deviation of the emitted spectrum from a black body spectrum. We show that the characteristics of the early UV/O emission constrain the radius of the progenitor star, its envelope composition, and the ratio of the ejecta energy to its mass, E/M. For He envelopes, neglecting the effect of recombination may lead to an over estimate of progenitor radius by more than an order of magnitude. We also show that the relative extinction at different wavelengths may be inferred from the light-curves at these wave-lengths, removing the uncertainty in the estimate of progenitor radius due to reddening (but not the uncertainty in E/M due to uncertainty in absolute extinction). The early UV/O observations of the type Ib SN2008D and of the type IIp SNLS-04D2dc are consistent with our model predictions. For SN2008D we find progenitor radius to be approx. 10^11 cm, and an indication that the He envelope contains a significant C/O fraction.Comment: 18 pages, 13 figures. Expanded discussion of diffusio

    Long wavelength unstable modes in the far upstream of relativistic collisionless shocks

    Full text link
    The growth rate of long wavelength kinetic instabilities arising due to the interaction of a collimated beam of relativistic particles and a cold unmagnetized plasma are calculated in the ultra relativistic limit. For sufficiently culminated beams, all long wave-length modes are shown to be Weibel-unstable, and a simple analytic expression for their growth rate is derived. For large transverse velocity spreads, these modes become stable. An analytic condition for stability is given. These analytic results, which generalize earlier ones given in the literature, are shown to be in agreement with numerical solutions of the dispersion equation and with the results of novel PIC simulations in which the electro-magnetic fields are restricted to a given k-mode. The results may describe the interaction of energetic cosmic rays, propagating into the far upstream of a relativistic collisionless shock, with a cold unmagnetized upstream. The long wavelength modes considered may be efficient in deflecting particles and could be important for diffusive shock acceleration. It is shown that while these modes grow in relativistic shocks propagating into electron-positron pair plasmas, they are damped in relativistic shocks propagating into electron-proton plasmas with moderate Lorenz factors \Gamma_{sh}\lesssim 100. If these modes dominate the deflection of energetic cosmic rays in electron-positron shocks, it is argued that particle acceleration is suppressed at shock frame energies that are larger than the downstream thermal energy by a factor greater than the shock Lorentz factor.Comment: 8 pages, 4 figure

    PTF11eon/SN2011dh: Discovery of a Type IIb Supernova From a Compact Progenitor in the Nearby Galaxy M51

    Get PDF
    On May 31, 2011 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras, as well as by the Palomar Transient Factory (PTF) survey, and rapidly confirmed it to be a Type II supernova. Our early light curve and spectroscopy indicates that PTF11eon resulted from the explosion of a relatively compact progenitor star as evidenced by the rapid shock-breakout cooling seen in the light curve, the relatively low temperature in early-time spectra and the prompt appearance of low-ionization spectral features. The spectra of PTF11eon are dominated by H lines out to day 10 after explosion, but initial signs of He appear to be present. Assuming that He lines continue to develop in the near future, this SN is likely a member of the cIIb (compact IIb; Chevalier and Soderberg 2010) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~10^13 cm) would be highly inconsistent with constraints from our post-explosion photometric and spectroscopic data

    SN 2010mb: Direct Evidence for a Supernova Interacting with a Large Amount of Hydrogen-free Circumstellar Material

    Get PDF
    We present our observations of SN 2010mb, a Type Ic supernova (SN) lacking spectroscopic signatures of H and He. SN 2010mb has a slowly declining light curve (LC) (~600 days) that cannot be powered by ^(56)Ni/^(56)Co radioactivity, the common energy source for Type Ic SNe. We detect signatures of interaction with hydrogen-free circumstellar material including a blue quasi-continuum and, uniquely, narrow oxygen emission lines that require high densities (~10^9 cm^(–3)). From the observed spectra and LC, we estimate that the amount of material involved in the interaction was ~3 M_☉. Our observations are in agreement with models of pulsational pair-instability SNe described in the literature

    SN 2010MB: Direct Evidence for A Supernova Interacting with A Large Amount of Hydrogen-Free Circumstellar Material

    Get PDF
    We present our observations of SN 2010mb, a Type Ic supernova (SN) lacking spectroscopic signatures of H and He. SN 2010mb has a slowly declining light curve (LC) (~600 days) that cannot be powered by 56Ni/56Co radioactivity, the common energy source for Type Ic SNe. We detect signatures of interaction with hydrogen-free circumstellar material including a blue quasi-continuum and, uniquely, narrow oxygen emission lines that require high densities (~109 cm–3). From the observed spectra and LC, we estimate that the amount of material involved in the interaction was ~3 M ☉. Our observations are in agreement with models of pulsational pair-instability SNe described in the literature
    corecore