548 research outputs found

    Projective Expected Utility

    Full text link
    Motivated by several classic decision-theoretic paradoxes, and by analogies with the paradoxes which in physics motivated the development of quantum mechanics, we introduce a projective generalization of expected utility along the lines of the quantum-mechanical generalization of probability theory. The resulting decision theory accommodates the dominant paradoxes, while retaining significant simplicity and tractability. In particular, every finite game within this larger class of preferences still has an equilibrium.Comment: 7 pages, to appear in the Proceedings of Quantum Interaction 200

    Finite-size scaling for non-linear rheology of fluids confined in a small space

    Full text link
    We perform molecular dynamics simulations in order to examine the rheological transition of fluids confined in a small space. By performing finite-size scaling analysis, we demonstrate that this rheological transition results from the competition between the system size and the length scale of cooperative particle motion.Comment: 4pages, 8 figure

    Separation of Test-Free Propositional Dynamic Logics over Context-Free Languages

    Full text link
    For a class L of languages let PDL[L] be an extension of Propositional Dynamic Logic which allows programs to be in a language of L rather than just to be regular. If L contains a non-regular language, PDL[L] can express non-regular properties, in contrast to pure PDL. For regular, visibly pushdown and deterministic context-free languages, the separation of the respective PDLs can be proven by automata-theoretic techniques. However, these techniques introduce non-determinism on the automata side. As non-determinism is also the difference between DCFL and CFL, these techniques seem to be inappropriate to separate PDL[DCFL] from PDL[CFL]. Nevertheless, this separation is shown but for programs without test operators.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Cognitive characteristics of older Japanese drivers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some causes of accidents among older drivers are: not paying attention to traffic signals; missing stop lines; and having to deal with and misjudging emergency situations. These causes of accidents reveal problems with attention and cognition. Such incidents are also related to driver perception and stress-coping mechanisms. It is important to examine the relation of stress reactions to attention and cognition as a factor influencing the causes of accidents commonly involving older drivers.</p> <p>Finding</p> <p>Subjects were 10 young drivers (23.3 ± 3.33 years) and 25 older drivers divided into two groups (older1 [60 to 65 years] and older2 [> 65 years]). This study revealed the correlation within driver stress inventory and driver coping questionnaires parameters was observed only in older drivers. They also needed a longer response time for Trail Making Test A and B. The factors affected the attention and cognition of older drivers by age but not driving experience itself, and coping parameters such as emotion focus, reappraisal, and avoidance were not included as stress inventory parameters. Being prone to fatigue was less for younger drivers than older drivers. Because they have shorter distances, shorter drive times, and no need for expressways, older drivers also had a significantly lower risk of thrill-seeking behaviour and more patience.</p> <p>Conclusion</p> <p>The intervention addressing their attention skills, aggressive feelings, and emotion focus should be considered. The technological improvements in cars will make older drivers feel safer and make driving easier which might lower the attention paid to the road, and regular driving training might be needed to assess and enhance their safety.</p

    Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation

    Get PDF
    Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas

    Individual and setting level predictors of the implementation of a skin cancer prevention program: a multilevel analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To achieve widespread cancer control, a better understanding is needed of the factors that contribute to successful implementation of effective skin cancer prevention interventions. This study assessed the relative contributions of individual- and setting-level characteristics to implementation of a widely disseminated skin cancer prevention program.</p> <p>Methods</p> <p>A multilevel analysis was conducted using data from the Pool Cool Diffusion Trial from 2004 and replicated with data from 2005. Implementation of Pool Cool by lifeguards was measured using a composite score (implementation variable, range 0 to 10) that assessed whether the lifeguard performed different components of the intervention. Predictors included lifeguard background characteristics, lifeguard sun protection-related attitudes and behaviors, pool characteristics, and enhanced (<it>i.e</it>., more technical assistance, tailored materials, and incentives are provided) versus basic treatment group.</p> <p>Results</p> <p>The mean value of the implementation variable was 4 in both years (2004 and 2005; SD = 2 in 2004 and SD = 3 in 2005) indicating a moderate implementation for most lifeguards. Several individual-level (lifeguard characteristics) and setting-level (pool characteristics and treatment group) factors were found to be significantly associated with implementation of Pool Cool by lifeguards. All three lifeguard-level domains (lifeguard background characteristics, lifeguard sun protection-related attitudes and behaviors) and six pool-level predictors (number of weekly pool visitors, intervention intensity, geographic latitude, pool location, sun safety and/or skin cancer prevention programs, and sun safety programs and policies) were included in the final model. The most important predictors of implementation were the number of weekly pool visitors (inverse association) and enhanced treatment group (positive association). That is, pools with fewer weekly visitors and pools in the enhanced treatment group had significantly higher program implementation in both 2004 and 2005.</p> <p>Conclusions</p> <p>More intense, theory-driven dissemination strategies led to higher levels of implementation of this effective skin cancer prevention program. Issues to be considered by practitioners seeking to implement evidence-based programs in community settings, include taking into account both individual-level and setting-level factors, using active implementation approaches, and assessing local needs to adapt intervention materials.</p

    Viscosity and Diffusion: Crowding and Salt Effects in Protein Solutions

    Get PDF
    We report on a joint experimental-theoretical study of collective diffusion in, and static shear viscosity of solutions of bovine serum albumin (BSA) proteins, focusing on the dependence on protein and salt concentration. Data obtained from dynamic light scattering and rheometric measurements are compared to theoretical calculations based on an analytically treatable spheroid model of BSA with isotropic screened Coulomb plus hard-sphere interactions. The only input to the dynamics calculations is the static structure factor obtained from a consistent theoretical fit to a concentration series of small-angle X-ray scattering (SAXS) data. This fit is based on an integral equation scheme that combines high accuracy with low computational cost. All experimentally probed dynamic and static properties are reproduced theoretically with an at least semi-quantitative accuracy. For lower protein concentration and low salinity, both theory and experiment show a maximum in the reduced viscosity, caused by the electrostatic repulsion of proteins. The validity range of a generalized Stokes-Einstein (GSE) relation connecting viscosity, collective diffusion coefficient, and osmotic compressibility, proposed by Kholodenko and Douglas [PRE 51, 1081 (1995)] is examined. Significant violation of the GSE relation is found, both in experimental data and in theoretical models, in semi-dilute systems at physiological salinity, and under low-salt conditions for arbitrary protein concentrations

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science

    Get PDF
    Abstract Background Many interventions found to be effective in health services research studies fail to translate into meaningful patient care outcomes across multiple contexts. Health services researchers recognize the need to evaluate not only summative outcomes but also formative outcomes to assess the extent to which implementation is effective in a specific setting, prolongs sustainability, and promotes dissemination into other settings. Many implementation theories have been published to help promote effective implementation. However, they overlap considerably in the constructs included in individual theories, and a comparison of theories reveals that each is missing important constructs included in other theories. In addition, terminology and definitions are not consistent across theories. We describe the Consolidated Framework For Implementation Research (CFIR) that offers an overarching typology to promote implementation theory development and verification about what works where and why across multiple contexts. Methods We used a snowball sampling approach to identify published theories that were evaluated to identify constructs based on strength of conceptual or empirical support for influence on implementation, consistency in definitions, alignment with our own findings, and potential for measurement. We combined constructs across published theories that had different labels but were redundant or overlapping in definition, and we parsed apart constructs that conflated underlying concepts. Results The CFIR is composed of five major domains: intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and the process of implementation. Eight constructs were identified related to the intervention (e.g., evidence strength and quality), four constructs were identified related to outer setting (e.g., patient needs and resources), 12 constructs were identified related to inner setting (e.g., culture, leadership engagement), five constructs were identified related to individual characteristics, and eight constructs were identified related to process (e.g., plan, evaluate, and reflect). We present explicit definitions for each construct. Conclusion The CFIR provides a pragmatic structure for approaching complex, interacting, multi-level, and transient states of constructs in the real world by embracing, consolidating, and unifying key constructs from published implementation theories. It can be used to guide formative evaluations and build the implementation knowledge base across multiple studies and settings.http://deepblue.lib.umich.edu/bitstream/2027.42/78272/1/1748-5908-4-50.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/2/1748-5908-4-50-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/3/1748-5908-4-50-S3.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/4/1748-5908-4-50-S4.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/5/1748-5908-4-50.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/6/1748-5908-4-50-S2.PDFPeer Reviewe

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature
    corecore