654 research outputs found

    Efisiensi Daya Tahan Baterai pada Sistem Keamanan Ksatrian dengan Pir Menggunakan Kontrol Pid

    Get PDF
    Sensor PIR adalah sensor yang mendeteksi adanya pancaran sinar inframerah yang dikeluarkan oleh manusia. Sensor PIR ini bersifat pasif, jadi sensor PIR ini tidak memancarkan sinar inframerah tetapi menangkap pancaran sinar inframerah yang dikeluarkan oleh benda-benda disekelilingnya. Pada penelitian kali ini sensor PIR digunakan untuk mendeteksi adanya seseorang yang ingin menyusup masuk dalam suatu asrama ksatrian TNI AD. Daya yang dikonsumsi oleh sensor PIR diatur seefisien mungkin sehingga daya tahan baterai dapat digunakan secara maksimal. Daya yang dikonsumsi sensor PIR dikontrol menggunakan kontrol PID dengan menaikkan dan menurunkan tegangan sesuai dengan karakteristik sensor PIR yang digunakan

    Composition-Dependent Structural and Transport Properties of Amorphous Transparent Conducting Oxides

    Get PDF
    Structural properties of amorphous In-based oxides, In-X-O with X=Zn, Ga, Sn, or Ge, are investigated using ab initio molecular dynamics liquid-quench simulations. The results reveal that indium retains its average coordination of 5.0 upon 20% X fractional substitution for In, whereas X cations satisfy their natural coordination with oxygen atoms. This finding suggests that the carrier generation is primarily governed by In atoms, in accord with the observed carrier concentration in amorphous In-O and In-X-O. At the same time, the presence of X affects the number of six-coordinated In atoms as well as the oxygen sharing between the InO6 polyhedra. Based on the obtained interconnectivity and spatial distribution of the InO6 and XOx polyhedra in amorphous In-X-O, composition-dependent structural models of the amorphous oxides are derived. The results help explain our Hall mobility measurements in In-X-O thin films grown by pulsed-laser deposition and highlight the importance of long-range structural correlations in the formation of amorphous oxides and their transport properties

    New solutions of relativistic wave equations in magnetic fields and longitudinal fields

    Get PDF
    We demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. This arbitrariness is connected to the existence of a transformation, which reduces effectively the number of variables in the initial equations. Then we use the corresponding representations to construct new sets of exact solutions, which may have a physical interest. Namely, we present new sets of stationary and nonstationary solutions in magnetic field and in some superpositions of electric and magnetic fields.Comment: 25 pages, LaTex fil

    Structural characterization of Clostridium sordellii spores of diverse human, animal, and environmental origin and comparison to Clostridium difficile spores

    Full text link
    © 2017 Rabi et al. Clostridium sordellii is an often-lethal bacterium causing human and animal disease. Crucial to the infectious cycle of C. sordellii is its ability to produce spores, which can germinate into toxin-producing vegetative bacteria under favorable conditions. However, structural details of the C. sordellii spore are lacking. Here, we used a range of electron microscopy techniques together with superresolution optical microscopy to characterize the C. sordellii spore morphology with an emphasis on the exosporium. The C. sordellii spore is made up of multiple layers with the exosporium presenting as a smooth balloon-like structure that is open at the spore poles. Focusing on the outer spore layers, we compared the morphologies of C. sordellii spores derived from different strains and determined that there is some variation between the spores, most notably with spores of some strains having tubular appendages. Since Clostridium difficile is a close relative of C. sordellii, their spores were compared by electron microscopy and their exosporia were found to be distinctly different from each other. This study therefore provides new structural details of the C. sordellii spore and offers insights into the physical structure of the exosporium across clostridial species

    Atomic levels in superstrong magnetic fields and D=2 QED of massive electrons: screening

    Full text link
    The photon polarization operator in superstrong magnetic fields induces the dynamical photon "mass" which leads to screening of Coulomb potential at small distances zâ‰Ș1/mz\ll 1/m, mm is the mass of an electron. We demonstrate that this behaviour is qualitatively different from the case of D=2 QED, where the same formula for a polarization operator leads to screening at large distances as well. Because of screening the ground state energy of the hydrogen atom at the magnetic fields B≫m2/e3B \gg m^2/e^3 has the finite value E0=−me4/2ln⁥2(1/e6)E_0 = -me^4/2 \ln^2(1/e^6).Comment: 12 pages, 2 figure

    The Quantum Adiabatic Approximation and the Geometric Phase

    Get PDF
    A precise definition of an adiabaticity parameter Îœ\nu of a time-dependent Hamiltonian is proposed. A variation of the time-dependent perturbation theory is presented which yields a series expansion of the evolution operator U(τ)=∑ℓU(ℓ)(τ)U(\tau)=\sum_\ell U^{(\ell)}(\tau) with U(ℓ)(τ)U^{(\ell)}(\tau) being at least of the order Μℓ\nu^\ell. In particular U(0)(τ)U^{(0)}(\tau) corresponds to the adiabatic approximation and yields Berry's adiabatic phase. It is shown that this series expansion has nothing to do with the 1/τ1/\tau-expansion of U(τ)U(\tau). It is also shown that the non-adiabatic part of the evolution operator is generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. Some related issues concerning the geometric phase are also discussed.Comment: uuencoded LaTeX file, 19 page
    • 

    corecore