686 research outputs found

    Colony size predicts division of labour in Attine ants

    Get PDF
    Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size–complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen–worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size–complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity

    Colony size predicts division of labour in Attine ants

    Get PDF
    Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size–complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen–worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size–complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity

    A Social Parasite Evolved Reproductive Isolation from Its Fungus-Growing Ant Host in Sympatry

    Get PDF
    SummaryInquiline social parasitic ant species exploit colonies of other ant species mainly by producing sexual offspring that are raised by the host. Ant social parasites and their hosts are often close relatives (Emery’s rule), and two main hypotheses compete to explain the parasites’ evolutionary origins: (1) the interspecific hypothesis proposes an allopatric speciation scenario for the parasite, whereas (2) the intraspecific hypothesis postulates that the parasite evolves directly from its host in sympatry [1–10]. Evidence in support of the intraspecific hypothesis has been accumulating for ants [3, 5, 7, 9–12], but sympatric speciation remains controversial as a general speciation mechanism for inquiline parasites. Here we use molecular phylogenetics to assess whether the socially parasitic fungus-growing ant Mycocepurus castrator speciated from its host Mycocepurus goeldii in sympatry. Based on differing patterns of relationship in mitochondrial and individual nuclear genes, we conclude that host and parasite occupy a temporal window in which lineage sorting has taken place in the mitochondrial genes but not yet in the nuclear alleles. We infer that the host originated first and that the parasite originated subsequently from a subset of the host species’ populations, providing empirical support for the hypothesis that inquiline parasites can evolve reproductive isolation while living sympatrically with their hosts

    The rediscovery of the putative ant social parasite Manica parasitica syn. nov. (Hymenoptera: Formicidae) reveals an unexpected endoparasite syndrome

    Get PDF
    Parasitism is ubiquitous across the tree of life, and parasites comprise approximately half of all animal species. Social insect colonies attract many pathogens, endo- and ectoparasites, and are exploited by social parasites, which usurp the social environment of their hosts for survival and reproduction. Exploitation by parasites and pathogens versus social parasites may cause similar behavioural and morphological modifications of the host. Ants possess two overlapping syndromes: the endo- and social parasite syndromes. We rediscovered two populations of the putative social parasite Manica parasitica in the Sierra Nevada, and tested the hypothesis that M. parasitica is an independently evolving social parasite. We evaluated traits used to discriminate M. parasitica from its host Manica bradleyi, and examined the morphology of M. parasitica in the context of ant parasitic syndromes. We find that M. parasitica is not a social parasite. Instead, M. parasitica represents cestode-infected M. bradleyi. We propose that M. parasitica should be regarded as a junior synonym of M. bradleyi. Our results emphasize that an integrative approach is essential for unravelling the complex life histories of social insects and their symbionts

    Four new inquiline social parasite species in the dolichoderine ant genus Tapinoma (Hymenoptera, Formicidae)

    Get PDF
    Four new inquiline social parasites are described in the dolichoderine ant genus Tapinoma from the Nearctic region, and keys are provided for queens and males of the Nearctic Tapinoma species. The new social parasite species represent the first inquiline species in the genus Tapinoma and the first confirmed inquilines known from the ant subfamily Dolichoderinae. The four new species appear to be workerless inquilines that exploit a single host, Tapinoma sessile (Say), and they represent at least two distinct life history syndromes. Tapinoma incognitum Cover & Rabeling, sp. nov. is highly derived morphologically and is a host-queen-tolerant inquiline. In contrast, T. inflatiscapus Cover & Rabeling, sp. nov. shows a lesser degree of morphological modification and appears to be a host-queen-intolerant social parasite. The life history of T. pulchellum Cover & Rabeling, sp. nov. is presently unknown, but its close similarity to T. incognitum suggests that it is also a host-queen-tolerant inquiline. The life history of T. shattucki Cover & Rabeling, sp. nov. is still uncertain. Our findings provide novel insights into the complex biology of ant inquiline life history syndromes

    Report on an all-sky LIGO search for periodic gravitational waves in the S4 data

    Full text link
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and having a negative frequency time derivative with magnitude between zero and 10−810^{-8} Hz/s. Data from the fourth LIGO science run have been used in this search. Three different semi-coherent methods of summing strain power were applied. Observing no evidence for periodic gravitational radiation, we report upper limits on strain amplitude and interpret these limits to constrain radiation from rotating neutron stars.Comment: 5 pages, 1 figure, presented at Amaldi7, Sydney (July 2007

    Picometer level displacement metrology with digitally enhanced heterodyne interferometry

    No full text
    Digitally enhanced heterodyne interferometry is a laser metrology technique employing pseudo-random codes phase modulated onto an optical carrier. We present the first characterization of the technique’s displacement sensitivity. The displacement of an optical cavity was measured using digitally enhanced heterodyne interferometry and compared to a simultaneous readout based on conventional Pound-Drever-Hall locking. The techniques agreed to within 5 pm/√Hz at 1 Hz, providing an upper bound to the displacement noise of digitally enhanced heterodyne interferometry. These measurements employed a real-time signal extraction system implemented on a field programmable gate array, suitable for closed-loop control applications. We discuss the applicability of digitally enhanced heterodyne interferometry for lock acquisition of advanced gravitational wave detectors

    Searching for stochastic gravitational-wave background with the co-located LIGO interferometers

    Full text link
    This paper presents techniques developed by the LIGO Scientific Collaboration to search for the stochastic gravitational-wave background using the co-located pair of LIGO interferometers at Hanford, WA. We use correlations between interferometers and environment monitoring instruments, as well as time-shifts between two interferometers (described here for the first time) to identify correlated noise from non-gravitational sources. We veto particularly noisy frequency bands and assess the level of residual non-gravitational coupling that exists in the surviving data.Comment: Proceedings paper from the 7th Edoardo Amaldi Conference on Gravitational Waves, held in Sydney, Australia from 8-14 July 2007. Accepted to J. Phys.: Conf. Se

    Improving the sensitivity of future GW observatories in the 1-10 Hz band: Newtonian and seismic noise

    Get PDF
    The next generation gravitational wave interferometric detectors will likely be underground detectors to extend the GW detection frequency band to frequencies below the Newtonian noise limit. Newtonian noise originates from the continuous motion of the Earth’s crust driven by human activity, tidal stresses and seismic motion, and from mass density fluctuations in the atmosphere. It is calculated that on Earth’s surface, on a typical day, it will exceed the expected GW signals at frequencies below 10 Hz. The noise will decrease underground by an unknown amount. It is important to investigate and to quantify this expected reduction and its effect on the sensitivity of future detectors, to plan for further improvement strategies. We report about some of these aspects. Analytical models can be used in the simplest scenarios to get a better qualitative and semi-quantitative understanding. As more complete modeling can be done numerically, we will discuss also some results obtained with a finite-element-based modeling tool. The method is verified by comparing its results with the results of analytic calculations for surface detectors. A key point about noise models is their initial parameters and conditions, which require detailed information about seismic motion in a real scenario. We will describe an effort to characterize the seismic activity at the Homestake mine which is currently in progress. This activity is specifically aimed to provide informations and to explore the site as a possible candidate for an underground observatory. Although the only compelling reason to put the interferometer underground is to reduce the Newtonian noise, we expect that the more stable underground environment will have a more general positive impact on the sensitivity.We will end this report with some considerations about seismic and suspension noise
    • 

    corecore