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Parasitism is ubiquitous across the tree of life, and parasites comprise approxi-
mately half of all animal species. Social insect colonies attractmany pathogens,
endo- and ectoparasites, and are exploited by social parasites, which usurp the
social environment of their hosts for survival and reproduction. Exploitation
by parasites and pathogens versus social parasites may cause similar behav-
ioural and morphological modifications of the host. Ants possess two
overlapping syndromes: the endo- and social parasite syndromes. We redis-
covered two populations of the putative social parasite Manica parasitica in
the Sierra Nevada, and tested the hypothesis that M. parasitica is an indepen-
dently evolving social parasite. We evaluated traits used to discriminate M.
parasitica from its host Manica bradleyi, and examined the morphology of M.
parasitica in the context of ant parasitic syndromes. We find that M. parasitica
is not a social parasite. Instead,M. parasitica represents cestode-infectedM. bra-
dleyi. We propose thatM. parasitica should be regarded as a junior synonym of
M. bradleyi. Our results emphasize that an integrative approach is essential for
unravelling the complex life histories of social insects and their symbionts.
1. Introduction
Parasitism is characterized by one organism exploiting another organism by feed-
ing on it, showing adaptations to it and harming it [1]. Parasitism is ubiquitous
across the tree of life, and parasites can drive biological diversification [2].
Approximately half of all animal species are parasites, and parasitism has evolved
more than 200 times in animals [3,4]. Social insects provide resources for parasites
and ideal conditions for parasite transmission because they occur abundantly in
terrestrial ecosystems, and live in large, densely packed colonies which often
persist formultiple years [5,6]. Accordingly, colonies of social insects are exploited
by many pathogens, endo- and ectoparasites, as well as parasitoids [5].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2023.0399&domain=pdf&date_stamp=2023-12-20
mailto:mprebus@gmail.com
mailto:crabeling@gmail.com
https://doi.org/10.6084/m9.figshare.c.6978730
https://doi.org/10.6084/m9.figshare.c.6978730
http://orcid.org/
http://orcid.org/0000-0001-8124-5939
http://orcid.org/0000-0003-4736-4998
http://orcid.org/0000-0001-7390-1318
http://orcid.org/0000-0002-0623-9069
http://orcid.org/0000-0003-1292-0309
http://creativecommons.org/licenses/by/4.0/


Table 1. Traits of the social parasite and endoparasite syndromes contrasted with those observed in Manica parasitica.

trait social parasite syndrome endoparasite syndrome Manica parasitica

limited geographical distribution + + +

presence of multiple parasite queens in host colony (polygyny) + − ?

coexistence with host queen (host-queen tolerance of inquilines) − (+) + ?

loss of worker caste (in inquilines) − (+) − −
reduced body size + + +

reduced wings + + ?

reduced wing venation + ? ?

reduced pilosity + − −
smooth, shiny integument + + +

integument colour altered + + +

reduced antennal segments + ? −
elongated antennal scapes + + +

reduced/modified mouthparts + ? −
reduced mandibular dentition + − −
oval head + + −
ocelli present + + −
reduced thoracic sclerites in gyne + + ?

propodeum reduced + − −
postpetiole broadened + + +

swollen gaster + + −
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Ant colonies in particular are inhabited by a menagerie
of guests, the so-called myrmecophiles, which are distantly
related invertebrates that steal resources or prey on the ants’
brood [7]. By contrast, social parasitism is a phenomenon
that is common between ant species. Here, a parasitic species
exploits the social behaviour of another, often closely-related
free-living species to survive and reproduce [8]. Of the
approximately 14 000 recognized ant species [9], more than
400 social parasite species are known, which evolved at
least 91 times independently across the ant tree of life
[10,11]. Furthermore, ants are hosts of many endoparasites,
including nematodes, cestodes, trematodes, fungi, bacteria
and viruses [5,12,13].

Among these host–parasite pairs, strong selection acts
on both partners, generating morphological, physiological
and behavioural syndromes, which indicate host–parasite
co-evolution [13,14]. One well-studied ant endoparasite
syndrome is the mermithogenic syndrome, where mer-
mithid nematodes develop for parts of their life cycles
inside ant hosts [15]. Upon maturity, the nematode alters
the host’s behaviour, and the infected ant drowns itself,
releasing the parasite [16]. Mermithid infections can
cause modifications to the host’s morphology, including
mosaic phenotypes in females and intercastes [17]. Some
morphological alterations are so extreme that parasitized
individuals were erroneously described as new species,
causing taxonomic confusion [15,18,19]. Another established
syndrome in ants is the social parasite syndrome. Here, the
morphology, behaviour, and reproductive patterns of ant
social parasites are adapted to the parasitic life history.
For example, queens of dulotic species kill the host queen
during colony founding, taking over the host colony; the
worker caste bears saber-shaped mandibles specialized for
assaulting host colonies and stealing their pupae [20]. In
contrast, inquiline parasites often coexist with the host
queen and are characterized by reduced size, loss of the
worker caste, reduced mouthparts and sib-mating inside
the nest [14,21–24].

The endoparasite and social parasite syndromes present
overlapping shifts in morphology and behaviour (table 1).
Therefore, disentangling these syndromes is challenging
when presented with morphology alone. Here, we examine
the biology of the putative social parasite Manica parasitica
(Creighton, 1934). Manica parasitica (figure 1a–c) was first
collected in the nest of Manica bradleyi (Wheeler, 1909)
(figure 1d–f ) in Yosemite National Park in California [25].
Only two additional collections have been documented,
both in the Sierra Nevada. Creighton classified M. parasitica
as a social parasite of M. bradleyi due to its co-nesting be-
haviour and morphology, which overlaps with the social
parasite syndrome, such as shiny integument, smaller
workers, reduced propodeum and a lower petiole height
compared to M. bradleyi [25]. Creighton [25] assumed tem-
porary social parasitism because putative parasite and host
workers occupy the same nest, and lack of mandibular
specialization did not indicate dulosis. Later, Wheeler &
Wheeler [26] noted M. parasitica ambulated differently
than M. bradleyi, but their conclusion was based upon a
single worker, and they could not rule out that it was
injured [26]. We revisited two historical M. parasitica collect-
ing localities and excavated nests containing M. bradleyi and
M. parasitica. To determine the relationship between the two,
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Figure 1. Morphology and geographical distribution of Manica parasitica and Manica bradleyi. Manica parasitica worker ( paratype originally designated as cotype;
unique specimen identifier CASENT0005974; photographer April Nobile, from www.antweb.org) in (a) profile (b) dorsal and (c) full-face view; M. bradleyi worker
(CASENT0005697; photographer April Nobile, from www.antweb.org) in (d ) profile (e) dorsal and ( f ) full-face view; (g) map of collection localities used in this study
(black circles) and type locality of M. parasitica (red triangle); (h) photograph of M. parasitica entering a nest of M. bradleyi taken at Clark Fork, CA.
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we critically re-evaluate the status of M. parasitica as a
symbiont and as a species using multiple lines of evidence.
2. Material and methods
For a full description of materials and methods, see electronic
supplementary material, file S1.

We located two populations of M. parasitica in the Sierra
Nevada (figure 1g). Nests were excavated via shovel; workers
and brood were transferred to nest-boxes for observation. To
document interactions between M. parasitica and M. bradleyi,
we recorded videos with a Sony AX53 4K Handycam.

To test the hypothesis that M. parasitica is an independently
evolving species, we gathered multiple specimens of M. parasitica
and M. bradleyi from the two populations (figure 1g), also sampl-
ing from the larger range of M. bradleyi. We extracted DNA,
prepared genomic libraries, and performed targeted enrichment
of ultraconserved elements (UCEs) [27]. We processed raw
reads with the PHYLUCE and SWSC-EN pipelines [28,29], incor-
porating sequences from previous datasets [27,30]. We used two
analytical approaches: concatenate and partition via IQTREE
v. 2.1.2 [31], and summary coalescent analysis via ASTRAL-III
[32]. Collection data are in electronic supplementary material,
table S1. Raw data are on the NCBI Sequence Read Archive
(BioProject PRJNA1013280).

To re-evaluate the morphological observations made by
Creighton [25], we took morphometric data from M. parasitica
and M. bradleyi using a Leica M205C microscope equipped
with a Leica DFC450 digital camera and the Leica Application
Suite v.4.5 (electronic supplementary material, file S1, figure S1
and table S3). Our morphometric dataset included 82 specimens
(M. parasitica, n = 40; M. bradleyi, n = 42) from both populations.
Raw data and scripts are available from the Dryad Digital
Repository: https://doi.org/10.5061/dryad.9s4mw6mnz [33].

Because we observed no reproductives of M. parasitica nor
M. bradleyi during excavations, we dissectedworkers of both species
to determine reproductive status, followingDolezal & Brent [34]. To
compare the internal anatomy of M. parasitica and M. bradleyi, we
scanned three specimens each using synchrotron X-ray micro-
computed tomography (microCT), processed the tomograms by
segmenting every 10th slice with Slicer v. 5.0.3 [35], and performed
semi-automated segmentation with Biomedisa [36]. Original scans
and segmentations also on the Dryad Digital Repository [33].

Metacestodes (larval cestodes) extracted from ants were fixed
in 95% ethanol. Specimens were mounted on microscope slides in
Berlese’s medium [37]. They were examined and photographed
using a Zeiss Axio Imager M2 light microscope.

https://doi.org/10.5061/dryad.9s4mw6mnz
http://www.antweb.org
http://www.antweb.org


25

27

29

31

33

Pr
dH

I

*

70

75

80

***

0.4

0.5

0.6

0.7

Pr
dH

*

1.25

1.50

1.75

(a)

(c)

(d)

ra
w

si
ze

 c
or

re
ct

ed

n.s. n.s.

18

19

20

21

22

23

PE
H

I

**

0.30

0.35

0.40

0.45

0.50

PE
H

0.2 coalescent units

Manica_parasitica_CA_Camp_W_MMP03583_1_P1206

Manica_bradleyi_CA_Sequoia_P1208

Manica_parasitica_CA_Camp_W_CR210623_01_P1196

Manica_bradleyi_CA_Clark_Fk_CR210622_01_P1185

Manica_bradleyi_CA_Clark_Fk_P605

Manica_bradleyi_CA_Clark_Fk_MMP03585_P1189

Manica_bradleyi_NV_Mt_Rose_P586

Manica_bradleyi_CA_Lake_Tahoe_P581

Manica_parasitica_CA_Clark_Fk_MMP03579_P1190

Manica_parasitica_CA_Clark_Fk_P604

Manica_bradleyi_CA_Camp_W_MMP03583_1_P1207

Manica_bradleyi_CA_Hope_Valley_P860

Manica_parasitica_CA_Camp_W_CR210623_04_P1198

Manica_parasitica_CA_Clark_Fk_CR210624_01_P1192

Manica_parasitica_CA_Camp_W_MMP03582_2_P1204

Manica_bradleyi_CA_Carson_Pass_P589

Manica_parasitica_CA_Camp_W_CR210623_05_P1200

Manica_bradleyi_CA_Camp_W_CR210623_01_P1197

Manica_bradleyi_CA_Lang_Crossing_P588

Manica_parasitica_CA_Camp_W_MMP03582_1_P1202

Manica_parasitica_CA_Clark_Fk_CR210622_01_P1184

Manica_parasitica_CA_Clark_Fk_MMP03587_P1186

Manica_bradleyi_CA_Camp_W_CR210623_05_P1201

Manica_parasitica_CA_Clark_Fk_MMP03585_P1188

Manica_bradleyi_CA_Sand_Flat_CASENT0106022

Myrmica_incompleta_EX808

Manica_bradleyi_CA_Clark_Fk_MMP03579_P1191

Manica_bradleyi_CA_Wrightwood_P587

Manica_bradleyi_CA_Clark_Fk_MMP03587_P1187

Manica_parasitica_CA_Clark_Fk_CR210625_01_P1194

Manica_bradleyi_CA_Camp_W_MMP03582_1_P1203

Manica_bradleyi_CA_Camp_W_MMP03582_2_P1205

Manica_bradleyi_CA_Clark_Fk_CR210625_01_P1195

Manica_bradleyi_CA_Camp_W_CR210623_04_P1199

Manica_bradleyi_CA_Clark_Fk_CR210624_01_P1193

Manica_invidia_CA_Lang_Crossing_P596

34.89/*

33.55/*

46.75/100

34.68/*

53.98/100

33.52/*

34.02/*

44.31/100

35.31/*

36.96/*

34.49/*

38.95/100

34.03/*

34.51/*

33.69/*

34.12/*

47.17/100

40.71/100

34.08/*

35.19/96

33.8/*

33.72/*

49.52/100

44.13/100
34.51/95

34.81/*

34.42/99

39.56/100

33.81/96

49.79/100

34.67/*
33.92/*

34.73/100

M. bradleyi

M. parasitica

mpt

ce

ce

ce

cr

vt

il

rec

vg

ov

nt

n.s.

0.4

0.6

PP
W

**

24

26

28

PP
W

I

M. bradleyiM. parasitica

mpt
il

rec

vg

ov

nt

*

0.9

1.0

1.1

1.2

1.3

SL

*

75

80

85

90

95

100

SI
2

**

1.4

1.6

1.8

2.0

2.2

2.4

C
S

n.s.

95

100

105

110

C
SI

**

1.50

1.75

2.00

2.25

H
FL

I
H

FL

W
L

bradleyi

parasitica bradleyiparasitica bradleyiparasitica bradleyi

parasitica bradleyiparasitica bradleyi parasitica bradleyi

parasitica bradleyi

parasitica bradleyi

parasitica bradleyi

parasitica bradleyi

parasitica bradleyi

parasitica bradleyiparasitica

(b)

100 µm

50 µm

ce

ce

ce

cr
crcr

vtvt

vt

0.5

Figure 2. Micromorphology, phylogeny and morphometrics of Manica parasitica and Manica bradleyi. (a) Summary coalescent phylogeny of Manica inferred with
ASTRAL III from UCE sequence data. (b) Cysticercoids of Raillietina (sensu lato) sp. from M. parasitica, mounted in Berlese’s medium. Top: whole view. Bottom: detail
of the anterior part demonstrating the armament of the rostellum and the suckers. (c) Cross-section of microCT reconstruction showing the in situ positions of
metacestodes within the gaster of a M. parasitica worker compared with M. bradleyi: ce metacestodes; cr crop; il ileum; mpt Malpighian tubules; nt nerve
tissue; ov ovary; rec rectum; vg venom gland; vt ventriculus. (d ) Results of morphometric analysis of traits highlighted by Creighton [25]. Top row: size corrected
morphometric data. CSI cephalic size index, HFLI hind femur length index, PEHI petiole height index, PPWI postpetiole width index, PrdHI propodeum height index,
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length, WL Weber’s length. Significance was evaluated with a t-test with a threshold of 0.05.
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3. Results
In this study, we located two populations of Manica parasitica,
a putative social parasite of M. bradleyi, in the Sierra Nevada.
To test if M. parasitica is an independently evolving
species, we inferred a phylogeny for our target taxa (n = 34)
using broad sampling (see electronic supplementary
material table S4 for sequencing statistics). We recovered a
statistically well-supported clade consisting of M. bradleyi
and M. parasitica, which were extensively interdigitated
(figure 2a; electronic supplementary material, file S3:
figure S1). Additionally, we recovered population structure



5

royalsocietypublishing.org/journal/rsbl
Biol.Lett.19:20230399

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 J

an
ua

ry
 2

02
4 
with individuals of M. parasitica and M. bradleyi generally
clustering together by population.

To evaluate the diagnostic, species-specific characters pro-
posed by Creighton [25], we collected morphometric data.
We found that M. parasitica is significantly smaller than
M. bradleyi (figure 2d: WL), and M. parasitica differs signifi-
cantly from M. bradleyi in multiple measurements (electronic
supplementary material, file S3: figure S2 for full results).
However, when corrected for size, many of these differences
became insignificant (figure 2d: PEHI, PrdHI). Instead, the
postpetiole was significantly broader, and the antennal
scapes were significantly longer in M. parasitica versus
M. bradleyi, both of which have been proposed as morpho-
logical traits similarly affected by the social parasite and
endoparasite syndromes. Additionally, hind femur length
was significantly longer in M. parasitica versus M. bradleyi
(figure 2d: HFLI and SI2). Significant differences in hind
femur length and antennal scape length, regardless of size cor-
rection, suggest differential effects of parasite infection on the
development of the head, thorax and abdomen versus extre-
mities, which remain less affected in parasitized individuals.

We did not recover reproductives of either species
from excavations. We dissected workers of both species to
determine reproductive status. We found no evidence of
reproductive activity in M. parasitica or M. bradleyi workers,
but the gaster of every M. parasitica worker (n = 32) contained
at least one, and up to 31 metacestodes. Workers ofM. bradleyi
(n = 33) contained none. From our microCT reconstructions,
we conclude that the metacestodes are localized in the haemo-
coel, without any apparent disruption to major organ systems
(figure 2c; electronic supplementary material, table S2),
although the venom gland ofM. parasitica appeared atrophied
compared to M. bradleyi (electronic supplementary material,
file S3: figure S3).

Examination of the metacestodes revealed a pattern
of body organization corresponding to cysticercoids
[38] with a fully developed scolex (identical to that of
adults) retracted into a solid cyst (figure 2b, top). They pos-
sess a rostellum armed with 194–198 hooks arranged in
two regular rows in a simple circle (figure 2b, bottom).
Hooks are shaped specifically (hammer-shaped or T-
shaped), with short blade, short handle and elongate guard.
Hook length measured along the axis of the guard is 14–16
μm. Suckers are armed 14–16 diagonal rows of spines situ-
ated peripherally; spines 12–13 μm long (figure 2b, bottom).
The shape and arrangement of the rostellar hooks, in combi-
nation with armed suckers, identify this species as a
member of the genus Raillietina Fuhrmann, 1920 (Cestoda:
Davaineidae).

Following morphometric analysis, we comparedM. parasi-
tica against the endo- and social parasite syndromes (table 1).
Although some characters of the endoparasite syndrome
remain unknown,M. parasitica overlaps with both syndromes,
e.g. reduced body size, limited geographical distribution,
smooth integument, elongated antennal scapes, altered integu-
ment colour and broadened postpetiole (figure 2d; electronic
supplementary material, table S3). However, more overlap
with the endoparasite syndrome is apparent: the worker
caste is not lost, and pilosity, mandibular dentition and propo-
deum are not reduced. Manica parasitica also exhibits some
characteristics that defy the endoparasite syndrome, i.e. the
head is not ovular, ocelli are absent and the gaster is not
swollen, despite carrying a sometimes-heavy load of parasites.
4. Discussion
Above, we tested the hypothesis that Manica parasitica is an
independently evolving social parasite species by (i) exten-
sively sampling two localities, (ii) inferring the phylogeny of
M. parasitica andM. bradleyi using dense population sampling,
(iii) evaluating morphological and life-history characters, and
(iv) using the combined evidence to evaluate M. parasitica in
the context of the social parasite and endoparasite syndromes.

Because M. parasitica has an unusual combination of char-
acters that variously overlap with (or defy) the endo- and
social parasite syndromes (table 1), we initially gave credulity
to Creighton’s hypothesis that M. parasitica is a social parasite.
Therefore, we had initiated the phylogenetic analysis beforewe
realized thatM. parasiticawas infected with cestodes. Our phy-
logeny is consistent with the result thatM. parasitica represents
cestode-infected M. bradleyi workers instead of an indepen-
dently evolving species. Manica parasitica and M. bradleyi
samples are interdigitated within a single clade, rendering
each other polyphyletic (figure 2a). Previous studies have
identified paraphyletic host groups, with social parasite
species nestedwithin the host clade. However, in those studies,
parasite taxa were monophyletic, and host paraphyly was
interpreted as a signature of incomplete lineage sorting follow-
ing recent speciation [39–41]. By contrast, the interdigitated
pattern of M. bradleyi and M. parasitica suggests close related-
ness between individuals and the absence of genetic
divergence.

The morphological alterations of M. parasitica are appar-
ently caused by infection with metacestodes. Remarkably,
we found that a single metacestode was sufficient to induce
the full suite of morphological changes in an individual (9 of
40 dissections; electronic supplementary material, table 2).
We have identified the cestode genus as Raillietina (sensu
lato), a cosmopolitan genus consisting of approximately 290
species that uses insects of different orders (rarely, gastropods)
as intermediate hosts and non-aquatic bird and mammal
species as definitive hosts [42–44]. Four subgenera have been
erected [42,43] based on two binary characters of the adult
morphology (genital pores unilateral/alternating; uterine
capsules with a single egg/multiple eggs), which are some-
times recognized as the full genera Raillietina (sensu sricto),
Fuhrmanneta Stiles & Orleman, 1926, Paroniella Fuhrmann,
1920 and Skjabinia Fuhrmann, 1920 [44,45]. However, these
are species assemblages formed to facilitate the identification
of adult cestodes rather than monophyletic groups. Of the
genus Raillietina (sensu lato), there are at least 21 species
recorded from North America [43]; their definitive hosts are
birds of the family Phasianidae, Odontophoridae, Picidae,
Icteridae and Columbidae as well as small mammals (rodents,
rabbits and hares). Exact species identification of the metaces-
tode in this study may continue with comparative studies
of the scolex armaments of the known North-American
Raillietina spp.

We remain uncertain of the details of parasite transmission,
but speculate that M. bradleyi collects bird faeces containing
cestode eggswhile foraging and feeds these to its larvae via tro-
phallaxis, which has been observed in other myrmecine ants
[46]. Development of infected individuals is likely disrupted
by nutrient deficiency, potentially causing the morphological
modifications observed in M. parasitica.

Whilewe did not conduct a quantitative analysis of behav-
iour in this study, we confirmed Wheeler & Wheeler’s [26]
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observation of M. parasitica’s unusual gait via casual obser-
vations of multiple individuals, finding that infected
workers move slowly and often fall when scaling small
objects. In both populations, we observed M. parasitica using
the same nest entrances as M. bradleyi (figure 1h). Workers of
M. parasitica interacted normally with M. bradleyi nest-mates,
accepting grooming from uninfected M. bradleyi workers
(electronic supplementary material, file S2). Manica parasitica
workers often shake as they rest or groom (electronic sup-
plementary material, file S2). Endoparasites are known to
manipulate the behaviour of their hosts, and some ‘adaptive
manipulations’ are interpreted as extended phenotypes of
the parasite, increasing parasite transmission [47]. The gait
of M. parasitica may be an adaptive manipulation by the
parasite, making workers easier prey for foraging birds.
Alternatively, the gait of M. parasitica workers could be a
pathological reaction or an adaptive host response [48]. The
potential adaptive significance of this behaviour must be
determined experimentally.

We remain uncertain of the significance, if any, of the
reduced integument sculpture and altered coloration of parasi-
tized individuals. Reduced sculpturing may be a product
of thinner cuticle, which may be caused by the parasite
reappropriating resources during larval development. Darker
coloration of parasitized individuals has also been observed
inMyrmica infected with davaineid cestodes [49]. Dark cuticle
could be caused by an immune response to the parasite
infection because melanization is one of many responses that
arthropod immune systems use to combat infections [50,51].
If infection occurs before pupation, melanin may affect the
adult tanning process, resulting in darker individuals.

Considering the combined evidence, we conclude that M.
parasitica represents cestode-infected M. bradleyi workers
rather than an interspecific social parasite of M. bradleyi.
Accordingly, we propose the taxonomic synonymy ofM. para-
sitica (Creighton, 1934) (syn. n.) under M. bradleyi
(Wheeler, 1909). We would like to reiterate the findings of
Csősz et al. [19] by emphasizing that, whenever possible, mul-
tiple lines of evidence should be used when describing new
taxa. This especially applies to putative social parasite species
given their rarity and the overlaps between the social parasite
and endoparasite syndromes (table 1).While there aremultiple
hypotheses for the adaptive significance of traits listed in
table 1 for the endo- and social parasite syndromes, to our
knowledge few have been formally tested. Future studies are
needed to shed light on the identity and life cycle of Raillietina
cestodes infecting M. bradleyi, and to test the adaptive signifi-
cance of the morphological and behavioural modifications
exhibited by ants infected with endoparasites, as well as by
ant social parasites.
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