54 research outputs found
Is the meiofauna a good indicator for climate change and anthropogenic impacts?
Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
Microbial community composition in sediments resists perturbation by nutrient enrichment
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1540–1548, doi:10.1038/ismej.2011.22.Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.Funding for this research came from NSF(DEB-0717155 to JEH, DBI-0400819 to JLB). Support for the sequencing facility came from NIH and NSF (NIH/NIEHS-P50-ES012742-01 and NSF/OCE 0430724-J Stegeman PI to HGM and MLS, and WM Keck Foundation to MLS). Salary support provided from Princeton University Council on Science and Technology to JLB. Support for development of the functional gene microarray provided by NSF/OCE99-081482 to BBW. The Plum Island fertilization experiment was funded by NSF (DEB 0213767 and DEB 0816963)
Nutrient Enrichment Increases Mortality of Mangroves
Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients
Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary
Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water
environments, and is often attributed to anthropogenic nutrient enrichment from
terrestrial-fluvial pathways. However, recent events in the U.S. Pacific
Northwest have highlighted that wind-forced upwelling can cause naturally
occurring low DO water to move onto the continental shelf, leading to
mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific
Northwest are strongly linked to ocean forcings, and here we report observations
on the spatial and temporal patterns of oxygen concentration in the Columbia
River estuary. Hydrographic measurements were made from transect (spatial
survey) or anchor station (temporal survey) deployments over a variety of wind
stresses and tidal states during the upwelling seasons of 2006 through 2008.
During this period, biologically stressful levels of dissolved oxygen were
observed to enter the Columbia River estuary from oceanic sources, with minimum
values close to the hypoxic threshold of 2.0 mg L−1. Riverine
water was consistently normoxic. Upwelling wind stress controlled the timing and
magnitude of low DO events, while tidal-modulated estuarine circulation patterns
influenced the spatial extent and duration of exposure to low DO water. Strong
upwelling during neap tides produced the largest impact on the estuary. The
observed oxygen concentrations likely had deleterious behavioral and
physiological consequences for migrating juvenile salmon and benthic crabs.
Based on a wind-forced supply mechanism, low DO events are probably common to
the Columbia River and other regional estuaries and if conditions on the shelf
deteriorate further, as observations and models predict, Pacific Northwest
estuarine habitats could experience a decrease in environmental quality
Abundance and vertical flux of Pseudo-nitzschia in the northern Gulf of Mexico
249-264Many species of the ubiquitous pennate diatom genus Pseudo-nitzschia have recently been discovered to produce domoic acid, a potent neurotoxin which causes Amnesic Shellfish Poisoning (ASP). Pseudo-nitzschia spp. were extremely abundant (up to 10(8) cells l(-1); present in 67% of 2195 samples) from 1990 to 1994 on the Louisiana and Texas, USA, continental shelves and moderately abundant (up to 10(5) cells l(-1); present in 18% of 192 samples) over oyster beds in the Terrebonne Bay estuary in Louisiana in 1993 and 1994. On the shelf there was a strong seasonal cycle with maxima every spring for 5 yr and sometimes in the fall, which were probably related to river flow, water column stability, and nutrient availability. In contrast, in the estuary there was no apparent seasonal cycle in abundance, but the time series of data is relatively short and the environment highly variable. At one site on the shelf, where sediment traps were deployed from spring to fall and sampled at frequent intervals in both 1990 and 1991, approximately 50% of the Pseudo-nitzschia spp. cells present in the water sank into sediment traps. Pseudo-nitzschia spp. were also abundant in surficial sediments. The species of Pseudo-nitzschia present, during this study were not routinely identified with the methods employed. However, toxin-producing P. multiseries has been identified previously from Galveston Bay, Texas, and cells from a bloom on the shelf in June 1993 were identified by scanning electron microscopy as P. pseudodelicatissima, which is sometimes toxic. Although there have been no known outbreaks of ASP in this area, historical data suggests that Pseudo-nitzschia spp,abundance may have increased on the shelf since the 1950s. It is hypothesized that the increase is due to doubling of the nutrient loading from the Mississippi and Atchafalaya rivers and increased eutrophication on the shelfhttp://gbic.tamug.edu/request.ht
Spatially Representing Vulnerability to Extreme Rain Events Using Midwestern Farmers’ Objective and Perceived Attributes of Adaptive Capacity
Respiration and Metabolic Age as Controls of Bottom Water Hypoxia on the Louisiana Continental Shelf; 18Δ as the Ghost of Respiration Past
Bottom waters of the Louisiana mid-continental shelf regularly become hypoxic with < 64 mmol m−3 (< 2 mg/l) dissolved oxygen (DO) during spring and summer months. This hypoxia is ultimately due to freshwater and nutrient inputs from the Mississippi River system. Two local controls of hypoxia were investigated, rates of respiration (R) in bottom waters versus the metabolic age of bottom water oxygen pools, estimated as time since oxygen saturation (TSOS). Fast R could lead to hypoxia even in recently formed bottom waters, while conversely, extended periods of bottom water isolation and TSOS could lead to hypoxia formation even when R is slow. Shipboard 24 h dark R measurements that were carried out during July shelfwide cruises in 2007 and 2008 indicated relatively slow R and long TSOS for hypoxic waters. To check these shipboard incubation results, oxygen isotopes were measured and modelled as field indicators of past R (RP), a time-averaged measure of in situ R that occurred prior to sampling during the days-to-weeks of oxygen drawdown in bottom waters. The isotope measurements showed that shipboard incubation R (RI) experiments underestimated RP that was 18–34% higher for hypoxic bottom waters than normoxic (DO > 64 mmol m−3) bottom waters. The field isotope measurements also showed that RP was above average and more important when and where river influences were larger, especially in the flood year 2008 and on the eastern shelf. In contrast, bottom water metabolic ages estimated as TSOS were above average and more important for hypoxia formation when and where river influences were smaller, especially in the average-flow year 2007 and on the western shelf.Griffith Sciences, School of Environment and ScienceNo Full Tex
- …
