385 research outputs found
Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems
When ties and incomplete preference lists are permitted in the Stable Marriage and Hospitals/Residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size and position of ties. In this paper, we describe polynomial-time 5/3-approximation algorithms for variants of these problems in which ties are on one side only and at the end of the preference lists. The particular variant is motivated by important applications in large scale centralised matching schemes
The Stable Roommates problem with short lists
We consider two variants of the classical Stable Roommates problem with
Incomplete (but strictly ordered) preference lists SRI that are degree
constrained, i.e., preference lists are of bounded length. The first variant,
EGAL d-SRI, involves finding an egalitarian stable matching in solvable
instances of SRI with preference lists of length at most d. We show that this
problem is NP-hard even if d=3. On the positive side we give a
(2d+3)/7-approximation algorithm for d={3,4,5} which improves on the known
bound of 2 for the unbounded preference list case. In the second variant of
SRI, called d-SRTI, preference lists can include ties and are of length at most
d. We show that the problem of deciding whether an instance of d-SRTI admits a
stable matching is NP-complete even if d=3. We also consider the "most stable"
version of this problem and prove a strong inapproximability bound for the d=3
case. However for d=2 we show that the latter problem can be solved in
polynomial time.Comment: short version appeared at SAGT 201
Rank Maximal Matchings -- Structure and Algorithms
Let G = (A U P, E) be a bipartite graph where A denotes a set of agents, P
denotes a set of posts and ranks on the edges denote preferences of the agents
over posts. A matching M in G is rank-maximal if it matches the maximum number
of applicants to their top-rank post, subject to this, the maximum number of
applicants to their second rank post and so on.
In this paper, we develop a switching graph characterization of rank-maximal
matchings, which is a useful tool that encodes all rank-maximal matchings in an
instance. The characterization leads to simple and efficient algorithms for
several interesting problems. In particular, we give an efficient algorithm to
compute the set of rank-maximal pairs in an instance. We show that the problem
of counting the number of rank-maximal matchings is #P-Complete and also give
an FPRAS for the problem. Finally, we consider the problem of deciding whether
a rank-maximal matching is popular among all the rank-maximal matchings in a
given instance, and give an efficient algorithm for the problem
Manipulation Strategies for the Rank Maximal Matching Problem
We consider manipulation strategies for the rank-maximal matching problem. In
the rank-maximal matching problem we are given a bipartite graph such that denotes a set of applicants and a set of posts. Each
applicant has a preference list over the set of his neighbours in
, possibly involving ties. Preference lists are represented by ranks on the
edges - an edge has rank , denoted as , if post
belongs to one of 's -th choices. A rank-maximal matching is one in which
the maximum number of applicants is matched to their rank one posts and subject
to this condition, the maximum number of applicants is matched to their rank
two posts, and so on. A rank-maximal matching can be computed in time, where denotes the number of applicants, the
number of edges and the maximum rank of an edge in an optimal solution.
A central authority matches applicants to posts. It does so using one of the
rank-maximal matchings. Since there may be more than one rank- maximal matching
of , we assume that the central authority chooses any one of them randomly.
Let be a manipulative applicant, who knows the preference lists of all
the other applicants and wants to falsify his preference list so that he has a
chance of getting better posts than if he were truthful. In the first problem
addressed in this paper the manipulative applicant wants to ensure that
he is never matched to any post worse than the most preferred among those of
rank greater than one and obtainable when he is truthful. In the second problem
the manipulator wants to construct such a preference list that the worst post
he can become matched to by the central authority is best possible or in other
words, wants to minimize the maximal rank of a post he can become matched
to
Integer programming methods for special college admissions problems
We develop Integer Programming (IP) solutions for some special college
admission problems arising from the Hungarian higher education admission
scheme. We focus on four special features, namely the solution concept of
stable score-limits, the presence of lower and common quotas, and paired
applications. We note that each of the latter three special feature makes the
college admissions problem NP-hard to solve. Currently, a heuristic based on
the Gale-Shapley algorithm is being used in the application. The IP methods
that we propose are not only interesting theoretically, but may also serve as
an alternative solution concept for this practical application, and also for
other ones
Profile-Based Optimal Matchings in the Student-Project Allocation Problem
In the Student/Project Allocation problem (spa) we seek to assign students to individual or group projects offered by lecturers. Students provide a list of projects they find acceptable in order of preference. Each student can be assigned to at most one project and there are constraints on the maximum number of students that can be assigned to each project and lecturer. We seek matchings of students to projects that are optimal with respect to profile, which is a vector whose rth component indicates how many students have their rth-choice project. We present an efficient algorithm for finding agreedy maximum matching in the spa context – this is a maximum matching whose profile is lexicographically maximum. We then show how to adapt this algorithm to find a generous maximum matching – this is a matching whose reverse profile is lexicographically minimum. Our algorithms involve finding optimal flows in networks. We demonstrate how this approach can allow for additional constraints, such as lecturer lower quotas, to be handled flexibly
b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs
A b-coloring of a graph is a proper coloring such that every color class
contains a vertex that is adjacent to all other color classes. The b-chromatic
number of a graph G, denoted by \chi_b(G), is the maximum number t such that G
admits a b-coloring with t colors. A graph G is called b-continuous if it
admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and
b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of
G, and every induced subgraph H_2 of H_1.
We investigate the b-chromatic number of graphs with stability number two.
These are exactly the complements of triangle-free graphs, thus including all
complements of bipartite graphs. The main results of this work are the
following:
- We characterize the b-colorings of a graph with stability number two in
terms of matchings with no augmenting paths of length one or three. We derive
that graphs with stability number two are b-continuous and b-monotonic.
- We prove that it is NP-complete to decide whether the b-chromatic number of
co-bipartite graph is at most a given threshold.
- We describe a polynomial time dynamic programming algorithm to compute the
b-chromatic number of co-trees.
- Extending several previous results, we show that there is a polynomial time
dynamic programming algorithm for computing the b-chromatic number of
tree-cographs. Moreover, we show that tree-cographs are b-continuous and
b-monotonic
Group Strategyproof Pareto-Stable Marriage with Indifferences via the Generalized Assignment Game
We study the variant of the stable marriage problem in which the preferences
of the agents are allowed to include indifferences. We present a mechanism for
producing Pareto-stable matchings in stable marriage markets with indifferences
that is group strategyproof for one side of the market. Our key technique
involves modeling the stable marriage market as a generalized assignment game.
We also show that our mechanism can be implemented efficiently. These results
can be extended to the college admissions problem with indifferences
New and simple algorithms for stable flow problems
Stable flows generalize the well-known concept of stable matchings to markets
in which transactions may involve several agents, forwarding flow from one to
another. An instance of the problem consists of a capacitated directed network,
in which vertices express their preferences over their incident edges. A
network flow is stable if there is no group of vertices that all could benefit
from rerouting the flow along a walk.
Fleiner established that a stable flow always exists by reducing it to the
stable allocation problem. We present an augmenting-path algorithm for
computing a stable flow, the first algorithm that achieves polynomial running
time for this problem without using stable allocation as a black-box
subroutine. We further consider the problem of finding a stable flow such that
the flow value on every edge is within a given interval. For this problem, we
present an elegant graph transformation and based on this, we devise a simple
and fast algorithm, which also can be used to find a solution to the stable
marriage problem with forced and forbidden edges.
Finally, we study the stable multicommodity flow model introduced by
Kir\'{a}ly and Pap. The original model is highly involved and allows for
commodity-dependent preference lists at the vertices and commodity-specific
edge capacities. We present several graph-based reductions that show
equivalence to a significantly simpler model. We further show that it is
NP-complete to decide whether an integral solution exists
Stable Noncrossing Matchings
Given a set of men represented by points lying on a line, and
women represented by points lying on another parallel line, with each
person having a list that ranks some people of opposite gender as his/her
acceptable partners in strict order of preference. In this problem, we want to
match people of opposite genders to satisfy people's preferences as well as
making the edges not crossing one another geometrically. A noncrossing blocking
pair w.r.t. a matching is a pair of a man and a woman such that
they are not matched with each other but prefer each other to their own
partners in , and the segment does not cross any edge in . A
weakly stable noncrossing matching (WSNM) is a noncrossing matching that does
not admit any noncrossing blocking pair. In this paper, we prove the existence
of a WSNM in any instance by developing an algorithm to find one in a
given instance.Comment: This paper has appeared at IWOCA 201
- …
