385 research outputs found

    Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems

    Get PDF
    When ties and incomplete preference lists are permitted in the Stable Marriage and Hospitals/Residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size and position of ties. In this paper, we describe polynomial-time 5/3-approximation algorithms for variants of these problems in which ties are on one side only and at the end of the preference lists. The particular variant is motivated by important applications in large scale centralised matching schemes

    The Stable Roommates problem with short lists

    Full text link
    We consider two variants of the classical Stable Roommates problem with Incomplete (but strictly ordered) preference lists SRI that are degree constrained, i.e., preference lists are of bounded length. The first variant, EGAL d-SRI, involves finding an egalitarian stable matching in solvable instances of SRI with preference lists of length at most d. We show that this problem is NP-hard even if d=3. On the positive side we give a (2d+3)/7-approximation algorithm for d={3,4,5} which improves on the known bound of 2 for the unbounded preference list case. In the second variant of SRI, called d-SRTI, preference lists can include ties and are of length at most d. We show that the problem of deciding whether an instance of d-SRTI admits a stable matching is NP-complete even if d=3. We also consider the "most stable" version of this problem and prove a strong inapproximability bound for the d=3 case. However for d=2 we show that the latter problem can be solved in polynomial time.Comment: short version appeared at SAGT 201

    Rank Maximal Matchings -- Structure and Algorithms

    Full text link
    Let G = (A U P, E) be a bipartite graph where A denotes a set of agents, P denotes a set of posts and ranks on the edges denote preferences of the agents over posts. A matching M in G is rank-maximal if it matches the maximum number of applicants to their top-rank post, subject to this, the maximum number of applicants to their second rank post and so on. In this paper, we develop a switching graph characterization of rank-maximal matchings, which is a useful tool that encodes all rank-maximal matchings in an instance. The characterization leads to simple and efficient algorithms for several interesting problems. In particular, we give an efficient algorithm to compute the set of rank-maximal pairs in an instance. We show that the problem of counting the number of rank-maximal matchings is #P-Complete and also give an FPRAS for the problem. Finally, we consider the problem of deciding whether a rank-maximal matching is popular among all the rank-maximal matchings in a given instance, and give an efficient algorithm for the problem

    Manipulation Strategies for the Rank Maximal Matching Problem

    Full text link
    We consider manipulation strategies for the rank-maximal matching problem. In the rank-maximal matching problem we are given a bipartite graph G=(AP,E)G = (A \cup P, E) such that AA denotes a set of applicants and PP a set of posts. Each applicant aAa \in A has a preference list over the set of his neighbours in GG, possibly involving ties. Preference lists are represented by ranks on the edges - an edge (a,p)(a,p) has rank ii, denoted as rank(a,p)=irank(a,p)=i, if post pp belongs to one of aa's ii-th choices. A rank-maximal matching is one in which the maximum number of applicants is matched to their rank one posts and subject to this condition, the maximum number of applicants is matched to their rank two posts, and so on. A rank-maximal matching can be computed in O(min(cn,n)m)O(\min(c \sqrt{n},n) m) time, where nn denotes the number of applicants, mm the number of edges and cc the maximum rank of an edge in an optimal solution. A central authority matches applicants to posts. It does so using one of the rank-maximal matchings. Since there may be more than one rank- maximal matching of GG, we assume that the central authority chooses any one of them randomly. Let a1a_1 be a manipulative applicant, who knows the preference lists of all the other applicants and wants to falsify his preference list so that he has a chance of getting better posts than if he were truthful. In the first problem addressed in this paper the manipulative applicant a1a_1 wants to ensure that he is never matched to any post worse than the most preferred among those of rank greater than one and obtainable when he is truthful. In the second problem the manipulator wants to construct such a preference list that the worst post he can become matched to by the central authority is best possible or in other words, a1a_1 wants to minimize the maximal rank of a post he can become matched to

    Integer programming methods for special college admissions problems

    Get PDF
    We develop Integer Programming (IP) solutions for some special college admission problems arising from the Hungarian higher education admission scheme. We focus on four special features, namely the solution concept of stable score-limits, the presence of lower and common quotas, and paired applications. We note that each of the latter three special feature makes the college admissions problem NP-hard to solve. Currently, a heuristic based on the Gale-Shapley algorithm is being used in the application. The IP methods that we propose are not only interesting theoretically, but may also serve as an alternative solution concept for this practical application, and also for other ones

    Profile-Based Optimal Matchings in the Student-Project Allocation Problem

    Get PDF
    In the Student/Project Allocation problem (spa) we seek to assign students to individual or group projects offered by lecturers. Students provide a list of projects they find acceptable in order of preference. Each student can be assigned to at most one project and there are constraints on the maximum number of students that can be assigned to each project and lecturer. We seek matchings of students to projects that are optimal with respect to profile, which is a vector whose rth component indicates how many students have their rth-choice project. We present an efficient algorithm for finding agreedy maximum matching in the spa context – this is a maximum matching whose profile is lexicographically maximum. We then show how to adapt this algorithm to find a generous maximum matching – this is a matching whose reverse profile is lexicographically minimum. Our algorithms involve finding optimal flows in networks. We demonstrate how this approach can allow for additional constraints, such as lecturer lower quotas, to be handled flexibly

    b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs

    Get PDF
    A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by \chi_b(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of G, and every induced subgraph H_2 of H_1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: - We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. - We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at most a given threshold. - We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. - Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic

    Group Strategyproof Pareto-Stable Marriage with Indifferences via the Generalized Assignment Game

    Full text link
    We study the variant of the stable marriage problem in which the preferences of the agents are allowed to include indifferences. We present a mechanism for producing Pareto-stable matchings in stable marriage markets with indifferences that is group strategyproof for one side of the market. Our key technique involves modeling the stable marriage market as a generalized assignment game. We also show that our mechanism can be implemented efficiently. These results can be extended to the college admissions problem with indifferences

    New and simple algorithms for stable flow problems

    Get PDF
    Stable flows generalize the well-known concept of stable matchings to markets in which transactions may involve several agents, forwarding flow from one to another. An instance of the problem consists of a capacitated directed network, in which vertices express their preferences over their incident edges. A network flow is stable if there is no group of vertices that all could benefit from rerouting the flow along a walk. Fleiner established that a stable flow always exists by reducing it to the stable allocation problem. We present an augmenting-path algorithm for computing a stable flow, the first algorithm that achieves polynomial running time for this problem without using stable allocation as a black-box subroutine. We further consider the problem of finding a stable flow such that the flow value on every edge is within a given interval. For this problem, we present an elegant graph transformation and based on this, we devise a simple and fast algorithm, which also can be used to find a solution to the stable marriage problem with forced and forbidden edges. Finally, we study the stable multicommodity flow model introduced by Kir\'{a}ly and Pap. The original model is highly involved and allows for commodity-dependent preference lists at the vertices and commodity-specific edge capacities. We present several graph-based reductions that show equivalence to a significantly simpler model. We further show that it is NP-complete to decide whether an integral solution exists

    Stable Noncrossing Matchings

    Full text link
    Given a set of nn men represented by nn points lying on a line, and nn women represented by nn points lying on another parallel line, with each person having a list that ranks some people of opposite gender as his/her acceptable partners in strict order of preference. In this problem, we want to match people of opposite genders to satisfy people's preferences as well as making the edges not crossing one another geometrically. A noncrossing blocking pair w.r.t. a matching MM is a pair (m,w)(m,w) of a man and a woman such that they are not matched with each other but prefer each other to their own partners in MM, and the segment (m,w)(m,w) does not cross any edge in MM. A weakly stable noncrossing matching (WSNM) is a noncrossing matching that does not admit any noncrossing blocking pair. In this paper, we prove the existence of a WSNM in any instance by developing an O(n2)O(n^2) algorithm to find one in a given instance.Comment: This paper has appeared at IWOCA 201
    corecore