| Universit
of GlasgowY

Kwanashie, A., Irving, R. W., Manlove, D. F., and Sng, C. T.S. (2015)
Profile-Based Optimal Matchings in the Student-Project Allocation
Problem. In: Combinatorial Algorithms: 25th International Workshop on
Combinatorial Algorithms (IWOCA 2014), Duluth, MN, USA, 15-17 Oct
2014, pp. 213-225. ISBN 9783319193151

Copyright © 2015 Springer International Publishing Switzerland

Version: Accepted

http://eprints.gla.ac.uk/105144

Deposited on: 07 July 2015

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/105144
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Profile-based optimal matchings in the
Student /Project Allocation problem

Augustine Kwanashie!, Robert W. Irving?!,
David F. Manlove!** and Colin T.S. Sng?**

1School of Computing Science, University of Glasgow, UK,
2eBay, Inc., Austin, Texas, USA.

Abstract. In the Student/Project Allocation problem (SPA) we seek to
assign students to individual or group projects offered by lecturers. Stu-
dents provide a list of projects they find acceptable in order of preference.
Each student can be assigned to at most one project and there are con-
straints on the maximum number of students that can be assigned to each
project and lecturer. We seek matchings of students to projects that are
optimal with respect to profile, which is a vector whose rth component
indicates how many students have their rth-choice project. We present
an efficient algorithm for finding a greedy mazimum matching in the SPA
context — this is a maximum matching whose profile is lexicographically
maximum. We then show how to adapt this algorithm to find a generous
mazimum matching — this is a matching whose reverse profile is lexico-
graphically minimum. Our algorithms involve finding optimal flows in
networks. We demonstrate how this approach can allow for additional
constraints, such as lecturer lower quotas, to be handled flexibly.

1 Introduction

In most academic programmes students are usually required to take up indi-
vidual or group projects offered by lecturers. Students are required to rank a
subset of the projects they find acceptable in order of preference. Each project
is offered by a unique lecturer who may also be allowed to rank the projects
she offers or the students who are interested in taking her projects in order of
preference. Each student can be assigned to at most one project and there are
usually constraints on the maximum number of students that can be assigned
to each project and lecturer. The problem then is to assign students to projects
in a manner that satisfies these capacity constraints while taking into account
the preferences of the students and lecturers involved. This problem has been
described in the literature as the Student-Project Allocation problem (SPA). In
some cases, lecturer lower quotas, indicating the minimum number of students
to be assigned to each lecturer, may also be specified.

* Supported by Engineering and Physical Sciences Research Council grant
EP/K010042/1.
** Work done while at the School of Computing Science, University of Glasgow.

Although described in an academic context, applications of SPA need not be
limited to assigning students to projects but may extend to other scenarios, such
as the assignment of employees to posts in a company where available posts are
offered by various departments. It is widely accepted that matching problems
(like SPA) are best solved by centralised matching schemes where agents submit
their preferences and a central authority computes an optimal matching that
satisfies all the specified criteria [5]. Moreover the potentially large number of
students and projects involved in these schemes motivates the need to discover
efficient algorithms for finding optimal matchings.

In spA, students are always required to provide preference lists over projects.
However, variants of the problem may be defined depending on the presence and
nature of lecturer preference lists. Some variants of SPA require both students
and lecturers to provide preference lists. These variants include: (i) the Stu-
dent/Project Allocation problem with lecturer preferences over Students (SPA-S)
[2] which requires each lecturer to rank the students who find at least one of
her offered projects acceptable, in order of preference, (ii) the Student/Project
Allocation problem with lecturer preferences over Projects (SPA-P) [I4U1T] which
involves lecturers ranking the projects they offer in order of preference and (iii)
the Student/Project Allocation problem with lecturer preferences over Student-
Project pairs (SPA-(s,P)) [2I3] where lecturers rank student-project pairs in order
of preference. These variants of SPA have been studied in the context of the well-
known stability solution criterion for matching problems [5]. The general stability
objective is to produce a matching M in which no student-project pair that are
not currently matched in M can simultaneously improve by being paired to-
gether (thus in the process potentially abandoning their partners in M). A full
description of the results relating to these sPA variants can be found in [13)].

1.1 One-sided preferences and profile-based optimality

In many practical SPA applications it is considered appropriate to allow only
students to submit preferences over projects. When preferences are specified by
only one set of agents in a two-sided matching problem, the notion of stability
becomes irrelevant. This motivates the need to adopt alternative solution criteria
when lecturer preferences are not allowed. In this subsection we mention some of
these solution criteria and briefly present results relating to them. These criteria
consider the size of the matchings produced as well as the satisfaction of the
students involved.

When the preference lists of the lecturers are ignored, the sPA problem be-
comes a two-sided matching problem with one-sided preferences. Various opti-
mality criteria for such problems have been studied in the literature [13]. Some
of these criteria depend on the profile or the cost of a matching. In the spa
context, the profile of a matching is a vector whose rth component indicates
the number of students obtaining their rth-choice project in the matching. The
cost of a matching (w.r.t. the students) is the sum of the ranks of the assigned
projects in the students’ preference lists (that is, the sum of rz, taken over all
components 7 of the profile, where x,. is the rth component value). A minimum

cost mazimum matching is a maximum cardinality matching with minimum
cost. A rank-mazimal matching is a matching that has lexicographically max-
imum profile [I0I8]. That is the maximum number of students are assigned to
their first-choice project and subject to this, the maximum number of students
are assigned to their second choice project and so on. However a rank maximal
matching need not be a maximum matching in the given instance (see, e.g.,
[13] p.43]). Since it is usually important to match as many students as possible,
we may first optimise the size of the matching before considering student sat-
isfaction. Thus we define a greedy mazimum matching [A15J6] as a maximum
matching which has lexicographically maximum profile. The intuition behind
both rank-maximal and greedy maximum matchings is to maximize the number
of students matched with higher ranked projects. This may lead to some stu-
dents being matched to projects that are relatively low on their preference lists.
An alternative approach is to find a generous mazimum matching which is a
maximum matching in which the minimum number of students are matched to
their Rth-choice project (where R is the maximum length of any students’ pref-
erence list) and subject to this, the minimum number of students are matched to
their (R — 1)th-choice project and so on. Greedy and generous maximum match-
ings have been used to assign students to projects in the School of Computing
Science, and students to elective courses in the School of Medicine, both at the
University of Glasgow, since 2007.

A special case of spA, where each project is offered by a unique lecturer
with an infinite upper quota and zero lower quota, can be modelled as the
Capacitated House Allocation problem (CHA). This is a variant of the well-studied
House Allocation problem (HA) [TII9] which involves the allocation of a set of
indivisible goods (which we call houses) to a set of applicants. In CHA, each
applicant is required to rank a subset of the houses in order of preference with
the houses having no preference over applicants. The applicants play the role of
students and the houses play the role of projects and lecturers. As in the case of
SPA, we seek to find a many-to-one matching comprising applicant-house pairs.
Efficient algorithms for finding profile-based optimal matchings in CHA have been
studied in the literature [QUT5IT7U6]. The most efficient of these is the O(R*m+/n)
algorithm for finding rank-maximal, greedy maximum and generous maximum
matchings in CHA problems due to Huang et al [6] where R* is the maximum
rank of any applicant in the matching, m is the sum of all the preference list
lengths and n is the total number of applicants and houses. These models however
fail to address the issue of load balancing among lecturers. In order to keep
the assignment of students fair each lecturer will typically have a minimum
(lower quota) and maximum (capacity /upper quota) number of students they are
expected to supervise. These numbers may vary for different lecturers according
to other administrative and academic commitments. Finding efficient algorithms
for profile-based optimal matchings when considering these lecturer upper and
lower quotas is the main motivation of this paper.

The cHA algorithms mentioned above are based on modelling the problem in
terms of a bipartite graph with the aim of finding a matching in the graph which

satisfies the stated criteria. However a more flexible approach would be to model
the problem as a network with the aim of finding a flow that can be converted to
a matching which satisfies the stated criteria. SPA has also been investigated in
the network flow context [I/I8] where a minimum cost mazimum flow algorithm
is used to find a minimum cost maximum matching and other profile-based opti-
mal matchings. The model presented in [I8] allows for lower quotas on lecturers
and projects as well as alternative lecturers to supervise each project. By an ap-
propriate assignment of edge weights in the network it is shown that a minimum
cost maximum flow algorithm (due to Orlin [I6]) can find rank maximal, gen-
erous maximum and greedy maximum matchings in a SPA instance. This takes
O(mlogn(m + nlogn)) time in the worst case, where m and n are the number
of vertices and edges in the network respectively. In the SPA context this takes
O(m3 log(ny +ny) +ma(ny + ng) log®(ny +ny)) time, where n; is the number of
students, ns is the number of projects and ms is the sum of all the students’ pref-
erence list lengths. However this approach involves assigning exponentially large
edge weights (see, e.g., [I3, p.405]), which may be computationally infeasible for
larger problem instances due to floating point inaccuracies in dealing with such
high numbers. For example given a large SPA instance involving say, n; = 100
students each ranking R = 10 projects in order of preference, edge weights could
potentially be of the order nft = 1001° = 10?° (and arithmetic involving such
weights could easily require more than the 15-17 significant figures available in
a 64-bit double-precision floating representation). Since the flow algorithms in-
volve comparing these edge weights, floating point precision errors could easily
cause them to fail in practice. Moreover using the standard assumption that
arithmetic on numbers of magnitude O(n;) takes constant time, arithmetic on
edge weights of magnitude O(nf’) would add an additional factor of O(R) onto
the running time of Orlin’s algorithm.

1.2 Owur contribution

In this paper we present efficient algorithms for finding optimal matchings to SPA
problems based on the profile-based greedy maximum and generous maximum
optimality criteria. Our model allows for lecturer upper and lower quotas and
finds these profile-based optimal matchings without the need for exponentially-
large edge weights.

We model SPA as a network flow problem and describe a modified augmenting
path algorithm for finding a maximum flow which can then be transformed
to an optimal SPA matching. This approach introduces greater flexibility by
allowing side constraints like lecturer lower quotas to be added to the model.
Our algorithms run in O(n? Rmy) time. The elimination of large edge weights
comes at the expense of a slightly slower running time than that of Orlin’s
algorithm in the worst case (i.e. slower by a factor of O(max{ -, 1;2-}) in
all cases. See [12] for further details).

The remainder of this paper is organised as follows. In Section 2] we formally
define the model. In Section Bl we describe an efficient algorithm for finding a
greedy maximum matching given a SPA instance. In Section @] we show how

this algorithm can be modified in order to find a generous maximum matching.
Finally in Section [l we explain how the approach can be extended to allow
lecturer lower quotas. All proofs for this paper can be found in [12].

2 Preliminary definitions

An instance I of the sPA problem consists of a set S of students, a set P
of projects and a set L of lecturers. Each student s; ranks a set A; C P of
projects that she considers acceptable in order of preference. This preference list
of projects may contain ties. Each project p; € P has an upper quota c¢; indicat-
ing the maximum number of students that can be assigned to it. Each lecturer
l € L offers a set of projects P, C P and has an upper quota d;: indicating
the maximum number of students that can be assigned to l;. Unless explicitly
mentioned, we assume that all lecturer lower quotas are equal to 0. The sets
{Pi, ..., Py} partition P. If project p; € Py, then we denote I = I(p;).
An assignment M in I is a subset of & x P such that:

1. Student-project pair (s;,p;) € M implies p; € A;.
2. For each student s; € S, |{(s;,p;) € M :p; € A;}| < 1.

If (siypj) € M we denote M(s;) = p;. For a project p;, M(p;) is the set of
students assigned to p; in M. Also if (s;,p;) € M and p; € Py, we say student s;
is assigned to project p; and to lecturer [;, in M. We denote the set of students
assigned to a lecturer Iy, as M (lx). A matching in this problem is an assignment
M that satisfies the capacity constraints of the projects and lecturers. That is,
|M(p;)| < ¢; for all projects p; € P and |M(l))| < d;} for all lecturers Iy, € L.

Given a student s; and a project p; € A;, we define rank(s;,p;) as 1 + the
number of projects that s; prefers to p;. Let R be the maximum rank of a project
in any student’s preference list. We define the profile p(M) of a matching M in
I as an R-tuple (x1, 29, ...,xr) where for each r (1 < r < R), x, is the number
of students s; assigned in M to a project p; such that rank(s;,p;) =r. Let a =
(x1,22,...,2r) and o = (y1, Y2, ..., yr) be any two profiles. We define the empty
profile Og = (01,02, ...,0r) where o, = 0 for all 7 (1 < r < R). We also define the
negative infinity profile By = (b1, ba,...,bg) where b, = —oo (1 < r < R) and
the positive infinity profile BE = (b1, b2, ...,br) where b, = 400 (1 <r < R). We
define the sum of two profiles o and ¢ as a4+ o = (1 + y1, T2 + Y2, ..., TR + YR)-
Given any ¢ (1 < ¢ < R), we define o + ¢ = (21, ..., Zg—1,%q + 1, Tgt1, .-, TR)-
We define a — ¢ in a similar way.

We define the total order 1 on profiles as follows. We say « left dominates
o, denoted by « >, o if there exists some r (1 < r < R) such that z,v = y,~
for 1 < v < r and z, > y,.. We define weak left domination as follows. We say
a > oif a =0 or a5 0. We may also define an alternative total order <p
on profiles as follows. We say a right dominates o (o <g o) if there exists some
r (1 <r < R) such that 2. = y,» for r <1’ < R and z, < y,. We also define
weak right domination as follows. We say a =g o if a = 0 or a < 0.

The spA problem can be modelled as a network flow problem. Given a SPA
instance I, we construct a flow network N(I) = (G,c) where G = (V,E) is a

directed graph and c is a non-negative capacity function ¢ : E — RT defining
the maximum flow allowed through each edge in E. The network consists of
a single source vertex vs and sink vertex v; and is constructed as follows. Let
V = {us, v JUSUPUL and E = EyUE;UE3UE, where Ey = {(vs, s;) : 8; € S},
FEy = {(Si,pj) LS € S,pj € Al}, FE3 = {(pj,lk) 1 p; € Pl = (pj)} and
Ey = {(lg,vs) : Il € L}. We set the capacities as follows: ¢(vs,s;) = 1 for all
(vs, 85) € En, c(si,p;) =1 for all (s;,p;) € Ea, c¢(p;,lx) = ¢; for all (p;,lx) € E3
and c(lg,vy) = d; for all (Ig,v:) € Ej.

We call a path P’ from vy to some project p; a partial augmenting path if
P’ can be extended by adding the edges (p;,!(p;)) and (I(p;),v:) to form an
augmenting path with respect to flow f. Given a partial augmenting path P’
from v to p;, we define the profile of P’, denoted p(P’), as follows:

p(P') = Or + > _{rank(s;,p;) : (si,p;) € P' A f(si,pj) = 0}
— > {rank(si,p;) : (pj,8:) € P' A f(si,p;) =1}

where additions are done with respect to the + and — operations on profiles.
Unlike the profile of a matching, the profile of an augmenting path may contain
negative values. Also if P’ can be extended to a full augmenting path P with
respect to flow f by adding the edges (p;,{(p;)) and ({(p;),v¢) where vs and p;
are the endpoints of P’, then we define the profile of P, denoted by p(P), to be
p(P) = p(P’). Multiple partial augmenting paths may exist from v, to p;, thus
we define the mazimum profile of a partial augmenting path from v, to p; with
respect to >, denoted @(p;), as follows:

D(p;) = maxy, {p(P’) : P’ is a partial augmenting path from vs to p,}.

An augmenting path P is called a mazimum profile augmenting path if p(P) =
maxy , {@(p;) : p; € P}. Let f be an integral flow in N. We define the matching
M(f) in I induced by f as follows: M (f) = {(s:,p;) : f(si,p;) = 1}. Clearly by
construction of N, M (f) is a matching in I, such that [M(f)| = |f|. If f is a flow
and P is an augmenting path with respect to f then p(M') = p(M)+ p(P) where
M = M(f),M" = M(f") and f’ is the flow obtained by augmenting f along P.
Also given a matching M in I, we define a flow f(M) in N corresponding to M
as follows:

V (vs,8:) € E1, f(vs,s;) =1 if s; is matched in M and f(vs, s;) = 0 otherwise.
V (si,p5) € Ea, f(si,p;) =11if (s;,p;) € M and f(s;,p;) = 0 otherwise.
V (pj,lk) € Es, f(pj,lk) = c; where c; = |M(p,)]|
V (Ik,v¢) € Ea, f(l,ve) = dj, where d), = |M(l1,)]

We define a student s; to be exposed if f(vs,s;) = 0 meaning that there is no
flow through s;. Similarly we define a project p; to be exposed if f(p;, k) < ¢;
and f(lg,v) < dif where I, = I(p;).

Let M be a matching of size k in I. We say that M is a greedy k-matching if
there is no other matching M’ such that |[M’'| = k and p(M') =1 p(M). If k is
the size of a maximum cardinality matching in I, we call M a greedy mazimum
matching in I. Also we say that M is a generous k-matching if there is no other

students’ preferences: lecturers’ offerings:

S1:p1 P2 D3 I {p1,p2}

s2:p1 lo: {ps}

S3:p2 P3 project capacities: c1 = 1,ca = 1,c3 =1

lecturer capacities: d1 = 2,d2 =1
Fig. 1. A spa instance [

matching M’ such that |[M'| = k and p(M') <r p(M). If k is the size of a
maximum cardinality matching in I, we call M a generous maximum matching
in 1.

Figure [shows a sample SPA instance with greedy and generous maximum

matchings My = {(s1,p3), (52,p1), (s3,p2)} and My = {(s1,p2), (s2,p1), (53,p3)}
respectively.

3 Greedy maximum matchings in SpPA

In this section we present the algorithm GREEDY-MAX-SPA for finding a greedy
maximum matching given a SPA instance. The algorithm is based on the general
Ford-Fulkerson algorithm for finding a maximum flow in a network [4]. We obtain
maximum profile augmenting paths by adopting techniques used in the bipartite
matching approach for finding a greedy maximum matching in HA [9] and CHA
[17).

The GREEDY-MAX-SPA algorithm shown in Algorithm [] takes in a SPA in-
stance I as input and returns a greedy maximum matching M in I. A flow
network N(I) = (G,c) is constructed as described in Section @l Given a flow
f in N(I) that yields a greedy k-matching M(f) in I, if k is not the size of a
maximum flow in N(I), we seek to find a maximum profile augmenting path P
with respect to f in N(I) such that the new flow f’ obtained by augmenting f
along P yields a greedy (k + 1)-matching M (f’) in I. Lemmas [T and 2l show the
correctness of this approach. We firstly show that if k is smaller than the size of
a maximum flow in N(I) then such a path is bound to exist.

Lemma 1 Let I be an instance of SPA and let n denote the size of a mazimum
matching in I. Let k (1 < k < n) be given and suppose that My is a greedy k-
matching in I. Let N = N(I) and f = f(My). Then there exists an augmenting
path P with respect to f in N such that if ' is the result of augmenting f along
P then Myy1 = M(f') is a greedy (k + 1)-matching in I.

Lemma 2 Let f be a flow in N and let M = M(f). Suppose that My is a
greedy k-matching. Let P be a maximum profile augmenting path with respect to
f. Let f' be the flow obtained by augmenting f along P. Now let My = M(f').
Then M1 is a greedy (k + 1)-matching.

The GET-MAX-AUG algorithm shown in Algorithm 2] accepts a flow network
N(I) and flow f as input and finds an augmenting path of maximum profile

Algorithm 1 GREEDY-MAX-SPA

Require: sprA instance [;
Ensure: return matching M;

1: define flow network N(I) = (G, c);
2: define empty flow f;

3: loop
4: P = GET-MAX-AUG(N(I), f);
5 if P # null then
6: augment f along P;
7
8

else
return M (f);

relative to f or reports that none exists. The latter case implies that M (f) is
already a greedy maximum matching. The method consists of three phases: an
initialisation phase (lines [{IT]), the main phase which is a loop containing two
other loops (lines[[2- [27) and a final phase (lines 28]- B3] where the augmenting
path is generated and returned.

For each project p; the GET-MAX-AUG method maintains a variable p(p;)
describing the profile of a partial augmenting path P’ from some exposed student
to p;. It also maintains, for every project p; € P, a pointer pred(p;) to the
student or lecturer preceding p; in P’. For every lecturer I, € L a pointer
pred(ly) is also used to refer to any project preceding I in P’. Thus the final
augmenting path produced will pass through each lecturer or project at most
once. The initialisation phase of the method involves setting all pred pointers to
null and p profiles to By . Next, the method seeks to find, for each project p;, a
partial augmenting path ((vs, si), (i, p;)) from the source, through an exposed
student s; to p; should one exist. In the presence of multiple paths satisfying
this criterion, the path with the best profile (w.r.t. =r) is selected. The variables
pred(p;) and p(p;) are updated accordingly. Thus at the end of this phase p(p;)
indicates the maximum profile of an augmenting path of length 2 via some
exposed student to p; should one exist. If such a path does not exist then p(p;)
and pred(p;) retain their initial values of By and null respectively.

In the main phase, the algorithm then runs |f| iterations, at each stage
attempting to increase the quality (w.r.t. =) of the augmenting paths described
by the p profiles. Each iteration runs two loops. Each loop identifies cases where
the flow through one edge in the network can be reduced in order to allow the
flow through another to be increased while improving the profile of the projects
involved. In both loops, the decision on whether to switch the flow between
candidate edges is made based on an edge relaxation operation similar to that
used in the Bellman-Ford algorithm for solving the single source shortest path
problem in which edge weights may be negative. In the first loop, we seek to
evaluate the gain that may be derived from switching the flow through a student
from one project to another. Given an edge (s;,pr) with a flow of 1 in f and
edge (s;,pj) with no flow in f, we define o to be the resulting profile of p;
if the partial augmenting path ending at p; is to be extended (via s;) to p;.

Thus o will become the new value of p(p;) should this extension take place. If
o =1, p(p;) (i.e. if the proposed profile is better than the current one), we extend
the augmenting path to p; and update p(p;) = o and pred(p;) = s;.

In the second loop, we seek to evaluate the gain that may be derived from
switching flow to some lecturer from one project to another. Given a lecturer I,
let P, C P, be the set of projects offered by l;, with positive outgoing flow and
P]! C Py be the set of projects offered by I that are undersubscribed in M(f).
Then we seek to determine if an improvement can be obtained by switching a
unit of flow from some project p; € P, to some other project p,,, € P;. This is
achieved by comparing the p(p,) and p(py,) profiles and updating p(p;) = p(Pm),
pred(p;) = i, and pred(li) = pm if p(pm) =1 p(p;) where p(pn,) represents the
profile of a partial augmenting path that does not already pass through I (i.e.,
pred(pm) # k). This means that the partial augmenting path ending at p,, can
be extended further (via lj) to p; while improving its profile. The intuition is
that, after augmenting along such a path, p,, gains an extra student while p;
loses one.

During the final phase, we iterate through all exposed projects and find the
one with the largest profile with respect to >, (say py). An augmenting path is
then constructed through the network using the pred values of the projects and
lecturers and the matched edges in M (f) starting from p,. The generated path
is returned to the calling algorithm. If no exposed project exists, the method
returns null. We next show that GET-MAX-AUG method produces such a maxi-
mum profile augmenting path in N with respect to f should one exist.

Lemma 3 Given a SPA instance I, let f be a flow in N = N(I) where k = |f|
is not the size of a mazimum matching in I and M(f) is a greedy k-matching
in 1. Algorithm GET-MAX-AUG finds a mazimum profile augmenting path in N
with respect to f.

From Lemmas[] 2 and [we can conclude that the algorithm GREEDY-MAX-
SPA finds a greedy maximum matching given a SPA instance. Concerning the
complexity of the algorithm, the main loop calls GET-MAX-AUG 7 times where
7 is the size of a maximum cardinality matching in I. The first phase of GET-
MAX-AUG performs O(mg) profile comparison operations and O(ns) initialisation
steps for the lecturer pred values where my = |Es|, ng = |£|, and each profile
comparison step requires O(R) time. The loop in the main phase of GET-MAX-
AUG runs k times where k is the value of the flow obtained at that time. The first
and second loops perform O(ms2) and O(ns) relaxation steps respectively where
ny = |P| and each relaxation step requires O(R) time to compare profiles. The
final phase of the algorithm performs O(n2) profile comparisons, each also taking
O(R) time. Thus the overall time complexity of the GET-MAX-AUG method
is O(maR + ng + kR(ma + na) + naR) = O(kR(m2)). Thus the overall time
complexity of the GREEDY-MAX-SPA algorithm is O(n?maR). A straightforward
refinement of the algorithm can be made by observing that if no profile is updated
during an iteration of the main loop, then no further profile improvements can
be made and we can terminate the main loop at this point. We conclude with
the following theorem.

10

Algorithm 2 GET-MAX-AUG (method for GREEDY-MAX-SPA)

Require: flow network N(I) = (G,c) where G = (V, E), flow f where M(f) is a

el el e e el sl el =
N I Al o sl

DN NN NN NN N
©XRXASI W

w w
N =

33:
34:
35:

o
=2

w
= O

greedy | f|-matching;
/* initialisation */
for project p; € P do
p(pj) = Bpg;
pred(p;) = null;
for each exposed student s; € S such that p; € A; do
o = Or + rank(si, p;);
if o >r p(p;) then
p(p;) = o;
pred(p;) = si;

: for lecturer iy € £ do

pred(lx) = null;

: /* main phase */
: for 1...|f|] do

/* first loop */
for each (s;,p;) € E where f(ss,p;) =0 and f(s;,pr) = 1 for some p;, € A; do
o = p(pr) — rank(si, px) + rank(s,p;);
if o =1, p(pj) then
p(pj) =05 pred(p;) = si;
/* second loop */
for each lecturer I, € £ do
0 =DBg; p.=null
for each project pm € Pi such that {(pm) =l A f(Pm, k) < cm do
if p(pm) =1 o then
o =p(pm); Pz =DPm;
for each project p; € Py such that I(p;) = lx A f(pj,lk) > 0Ap; #p. do
if o =1 p(p;) then
p(p;) = o5 pred(p;) =lk; pred(lx) = pz;

: /* final phase */
: p=max,; ({Br}U{p(p;) : p; € P is exposed});
: if p>1 By then

pq = arg maxy, ({Bg } U{p(p;) : p; € P is exposed});
@ = path obtained by following pred values and matched edges in M (f) from
pq to an exposed student;
return (vs) ++ reverse(Q) ++ (I(pq),v:); /*++ denotes concatenation* /
else
return null;

Theorem 4 Given a SPA instance I, a greedy maximum matching in I can be
obtained in O(n3Rmy) time.

4

Generous maximum matchings in SPA

Analogous to the case for greedy maximum matchings, generous maximum match-
ings can also be found by modelling SPA as a network flow problem. Given a SPA
instance I we define the following terms relating to partial augmenting paths

11

in N(I). For each project p; € P, we define the minimum profile of a partial
augmenting path from v, through an exposed student to p; with respect to <g,
denoted @' (p,), as follows: &' (p;) = min<, {p(P’) : P’ is a partial augmenting
path from vs to p;}.

If a partial augmenting path P’ ending at project p; can be extended to
an augmenting path P by adding edges (p;,!(p;)) and (I(p;),v¢) then such
an augmenting path is called a minimum profile augmenting path if p(P) =
min_ . {® (p,;) : p; € P}. A similar approach to that used to find a greedy maxi-
mum matching can be adopted in order to find a generous maximum matching.
The main GREEDY-MAX-SPA algorithm will remain unchanged (we will call it
GENEROUS-MAX-SPA for convenience) as the intuition remains to successively
find larger generous k-matchings until a generous maximum matching is ob-
tained. We however make slight changes to the GET-MAX-AUG algorithm in
order to find a minimum profile augmenting path in the network should one ex-
ist (the resulting algorithm is then known as GET-MIN-AUG). The changes are
as follows. (i) We replace all occurrences of left domination > with right dom-
ination <g. (ii) We also replace all occurrences of negative infinity profile B
with a positive infinity profile BE. (iii) Finally we replace both max functions
(in lines 29 and 1)) with the min function. Analogous statements and proofs
of Lemmas [[and [3] exist in this context. Thus we may conclude with the
following theorem concerning the GENEROUS-MAX-SPA algorithm.

Theorem 5 Given a SPA instance I, a generous mazimum matching in I can
be obtained in O(n? Rmsy) time.

5 Lecturer lower quotas

We have so far considered a SPA model in which each lecturer [; has an upper
quota. In this section we discuss how the algorithm presented above can be mod-
ified to allow lecturer lower quotas. We call this extension the Student/Project
problem with Lecturer lower quotas (SPA-L). In an instance I of SPA-L, each lec-
turer [, now additionally has a lower quota d, (I) (it will be helpful to indicate
specific instances to which these lower bounds refer within the notation). We
assume that d, (1) > 0 and d (I) > max{d, (I),1}. In the SPA-L context, our
definition of a matching as presented in Section 2 needs to be tightened slightly.
A constrained matching is a matching M in the SPA context with the additional
property that, for each lecturer Iy, |M(Ix)| > d, (I). We seek to find greedy and
generous maximum constrained matchings should they exist.

Let I be a SPA-L instance. Also let I’ be a SPA instance constructed from I
by setting d (I') = 0 and d; (I') = d;, (I) for each lecturer [). Firstly we find
a greedy maximum matching M’ in I’ using the GREEDY-MAX-SPA algorithm.
If f/ = f(M’) is not a saturating flow (i.e., one in which all edges (Ix,v:) € Ey4
are saturated), then I admits no constrained matching. Otherwise we augment
f/in N(I) by calling GREEDY-MAX-SPA on I, changing line 2 so that flow f is
assigned to be f’ initially. We continuously augment the flow until no augmenting
path exists. The matching M = M(f) obtained from the resulting flow f is a

12

greedy maximum constrained matching in I. Generous maximum constrained
matchings can also be found by using GENEROUS-MAX-SPA and GET-MIN-AUG
instead of GREEDY-MAX-SPA and GET-MAX-AUG respectively.

Theorem 6 Let I be a SPA-L instance. Each of the problems of finding a greedy
or generous maximum constrained matching, or reporting that no such matching
exists, can be solved in O(n? Rmgy) time.

References

1. Abraham, D. J.: Algorithmics of two-sided matching problems. Master’s thesis, Uni-
versity of Glasgow, Department of Computing Science. (2003)

2. Abraham, D. J., Irving, R.W., Manlove, D.F.: Two algorithms for the Student-
Project allocation problem. Journal of Discrete Algorithms. 5(1), 79-91 (2007)

3. Abu El-Atta, A.H., Moussa, M.I.: Student project allocation with preference lists
over (student,project) pairs. In Proceedings of ICCEE 09: the 2nd International
Conference on Computer and Electrical Engineering. 375-379 (2009)

4. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press. (1962)

5. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms.
MIT Press. (1989)

6. Huang, C.-C., Kavitha, T., Mehlhorn, K., Michail, D.: Fair matchings and related
problems. In Proceedings of FSTTCS 2013: Foundations of Software Technology
and Theoretical Computer Science. 24, 339-350 (2013)

7. Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions.
Journal of Political Economy. 87(2), 293-314 (1979)

8. Irving, R.W.: Greedy matchings. Technical Report TR-2003-136, University of Glas-
gow, Department of Computing Science. (2003)

9. Irving, R.W.: Greedy and generous matchings via a variant of the Bellman-Ford
algorithm. Unpublished manuscript. (2006)

10. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal
matchings. ACM Transactions on Algorithms. 2(4), 602-610 (2006)

11. Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation bounds for
the student-project allocation problem with preferences over projects. Journal of
Discrete Algorithms. 13, 59-66 (2012)

12. Kwanashie, A., Irving, R.W., Manlove, D.F., Sng, C.T.S.: Profile-based optimal
matchings in the Student/Project Allocation problem. CoRR Technical Report
1403.0751. Available from http://arxiv.org/abs/1403.0751. (2014)

13. Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific.
2013

14.(1\/[3,n)10ve7 D.F., O’Malley, G.: Student project allocation with preferences over
projects. Journal of Discrete Algorithms. 6, 553-560 (2008)

15. Mehlhorn, K., Michail, D.: Network problems with non-polynomial weights and
applications. Unpublished manuscript. (2006)

16. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations
Research. 41(2), 338-350 (1993)

17. Sng, C.T.S.: Efficient Algorithms for Bipartite Matching Problems with Prefer-
ences. PhD thesis, University of Glasgow, Department of Computing Science. (2008)

18. Zelvyte, M.: The Student-Project Allocation problem: a network flow model. Hon-
ours project dissertation, University of Glasgow, School of Mathematics. (2014)

19. Zhou, L.: On a conjecture by Gale about one-sided matching problems. Journal of
Economic Theory. 52(1), 123-135 (1990)

http://arxiv.org/abs/1403.0751

	Profile-based optimal matchings in the Student/Project Allocation problem

