Let G = (A U P, E) be a bipartite graph where A denotes a set of agents, P
denotes a set of posts and ranks on the edges denote preferences of the agents
over posts. A matching M in G is rank-maximal if it matches the maximum number
of applicants to their top-rank post, subject to this, the maximum number of
applicants to their second rank post and so on.
In this paper, we develop a switching graph characterization of rank-maximal
matchings, which is a useful tool that encodes all rank-maximal matchings in an
instance. The characterization leads to simple and efficient algorithms for
several interesting problems. In particular, we give an efficient algorithm to
compute the set of rank-maximal pairs in an instance. We show that the problem
of counting the number of rank-maximal matchings is #P-Complete and also give
an FPRAS for the problem. Finally, we consider the problem of deciding whether
a rank-maximal matching is popular among all the rank-maximal matchings in a
given instance, and give an efficient algorithm for the problem