116 research outputs found

    TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequencing metagenomes that were pre-amplified with primer-based methods requires the removal of the additional tag sequences from the datasets. The sequenced reads can contain deletions or insertions due to sequencing limitations, and the primer sequence may contain ambiguous bases. Furthermore, the tag sequence may be unavailable or incorrectly reported. Because of the potential for downstream inaccuracies introduced by unwanted sequence contaminations, it is important to use reliable tools for pre-processing sequence data.</p> <p>Results</p> <p>TagCleaner is a web application developed to automatically identify and remove known or unknown tag sequences allowing insertions and deletions in the dataset. TagCleaner is designed to filter the trimmed reads for duplicates, short reads, and reads with high rates of ambiguous sequences. An additional screening for and splitting of fragment-to-fragment concatenations that gave rise to artificial concatenated sequences can increase the quality of the dataset. Users may modify the different filter parameters according to their own preferences.</p> <p>Conclusions</p> <p>TagCleaner is a publicly available web application that is able to automatically detect and efficiently remove tag sequences from metagenomic datasets. It is easily configurable and provides a user-friendly interface. The interactive web interface facilitates export functionality for subsequent data processing, and is available at <url>http://edwards.sdsu.edu/tagcleaner</url>.</p

    Short-Term Exposure to Warm Microhabitats Could Explain Amphibian Persistence with Batrachochytrium dendrobatidis

    Get PDF
    Environmental conditions can alter the outcomes of symbiotic interactions. Many amphibian species have declined due to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), but many others persist despite high Bd infection prevalence. This indicates that Bd's virulence is lower, or it may even be a commensal, in some hosts. In the Australian Wet Tropics, chytridiomycosis extirpated Litoria nannotis from high-elevation rain forests in the early 1990 s. Although the species is recolonizing many sites, no population has fully recovered. Litoria lorica disappeared from all known sites in the early 1990 s and was thought globally extinct, but a new population was discovered in 2008, in an upland dry forest habitat it shares with L. nannotis. All frogs of both species observed during three population censuses were apparently healthy, but most carried Bd. Frogs perch on sun-warmed rocks in dry forest streams, possibly keeping Bd infections below the lethal threshold attained in cooler rain forests. We tested whether short-term elevated temperatures can hamper Bd growth in vitro over one generation (four days). Simulating the temperatures available to frogs on strongly and moderately warmed rocks in dry forests, by incubating cultures at 33°C for one hour daily, reduced Bd growth below that of Bd held at 15°C constantly (representing rain forest habitats). Even small decreases in the exponential growth rate of Bd on hosts may contribute to the survival of frogs in dry forests

    The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes

    Get PDF
    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions

    Minimum information about an uncultivated virus genome (MIUVIG)

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordNOTE: the full list of funders and grants is in the acknowledgements section of the articleWe present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.Simons Foundation InternationalNatural Environment Research Council (NERC

    Viral ecogenomics across the Porifera

    Get PDF
    BackgroundViruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea.ResultsViromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts.ConclusionsOur results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts

    Simultaneous Identification of DNA and RNA Viruses Present in Pig Faeces Using Process-Controlled Deep Sequencing

    Get PDF
    Background: Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2) with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. Results: The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7 % of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9%) and mammalian viruses (23.9%); 0.8 % of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV), represents a novel pi

    Metagenomic Analysis of Respiratory Tract DNA Viral Communities in Cystic Fibrosis and Non-Cystic Fibrosis Individuals

    Get PDF
    The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral communities in 5 individuals with cystic fibrosis (CF) and 5 individuals without the disease. Overall, diversity of viruses in the airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized. CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses, including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar, and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by an over-representation of Guanosine-5′-triphosphate,3′-diphosphate pyrophosphatase, an enzyme involved in the bacterial stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident microbiota

    PhiSiGns: an online tool to identify signature genes in phages and design PCR primers for examining phage diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phages (viruses that infect bacteria) have gained significant attention because of their abundance, diversity and important ecological roles. However, the lack of a universal gene shared by all phages presents a challenge for phage identification and characterization, especially in environmental samples where it is difficult to culture phage-host systems. Homologous conserved genes (or "signature genes") present in groups of closely-related phages can be used to explore phage diversity and define evolutionary relationships amongst these phages. Bioinformatic approaches are needed to identify candidate signature genes and design PCR primers to amplify those genes from environmental samples; however, there is currently no existing computational tool that biologists can use for this purpose.</p> <p>Results</p> <p>Here we present PhiSiGns, a web-based and standalone application that performs a pairwise comparison of each gene present in user-selected phage genomes, identifies signature genes, generates alignments of these genes, and designs potential PCR primer pairs. PhiSiGns is available at (<url>http://www.phantome.org/phisigns/</url>; <url>http://phisigns.sourceforge.net/</url>) with a link to the source code. Here we describe the specifications of PhiSiGns and demonstrate its application with a case study.</p> <p>Conclusions</p> <p>PhiSiGns provides phage biologists with a user-friendly tool to identify signature genes and design PCR primers to amplify related genes from uncultured phages in environmental samples. This bioinformatics tool will facilitate the development of novel signature genes for use as molecular markers in studies of phage diversity, phylogeny, and evolution.</p

    Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

    Get PDF
    Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations

    Thermal and Sedimentation Stress Are Unlikely Causes of Brown Spot Syndrome in the Coral Reef Sponge, Ianthella basta

    Get PDF
    Background: Marine diseases are being increasingly linked to anthropogenic factors including global and local stressors. On the Great Barrier Reef, up to 66% of the Ianthella basta population was recently found to be afflicted by a syndrome characterized by brown spot lesions and necrotic tissue.\ud \ud Methodology/Principal Findings: Manipulative experiments were undertaken to ascertain the role of environmental stressors in this syndrome. Specifically, the effects of elevated temperature and sedimentation on sponge health and symbiont stability in I. basta were examined. Neither elevated temperature nor increased sedimentation were responsible for the brown spot lesions, but sponges exposed to 32°C developed substantial discoloration and deterioration of their tissues, resulting in death after eight days and a higher microbial diversity in those samples. No shifts in the microbial community of I. basta were observed across a latitudinal gradient or with increased sedimentation, with three previously described symbionts dominating the community of all sponges (Alphaproteobacteria, Gammaproteobacteria and Thaumarchaea).\ud \ud Conclusions/Significance: Results from this study highlight the stable microbial community of I. basta and indicate that thermal and sedimentation stress are not responsible for the brown spot lesions currently affecting this abundant and ecologically important sponge species
    corecore