165 research outputs found

    Identification and comparative analysis of components from the signal recognition particle in protozoa and fungi

    Get PDF
    BACKGROUND: The signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the ER membrane. The SRP of metazoans is well characterized and composed of an RNA molecule and six polypeptides. The particle is organized into the S and Alu domains. The Alu domain has a translational arrest function and consists of the SRP9 and SRP14 proteins bound to the terminal regions of the SRP RNA. So far, our understanding of the SRP and its evolution in lower eukaryotes such as protozoa and yeasts has been limited. However, genome sequences of such organisms have recently become available, and we have now analyzed this information with respect to genes encoding SRP components. RESULTS: A number of SRP RNA and SRP protein genes were identified by an analysis of genomes of protozoa and fungi. The sequences and secondary structures of the Alu portion of the RNA were found to be highly variable. Furthermore, proteins SRP9/14 appeared to be absent in certain species. Comparative analysis of the SRP RNAs from different Saccharomyces species resulted in models which contain features shared between all SRP RNAs, but also a new secondary structure element in SRP RNA helix 5. Protein SRP21, previously thought to be present only in Saccharomyces, was shown to be a constituent of additional fungal genomes. Furthermore, SRP21 was found to be related to metazoan and plant SRP9, suggesting that the two proteins are functionally related. CONCLUSIONS: Analysis of a number of not previously annotated SRP components show that the SRP Alu domain is subject to a more rapid evolution than the other parts of the molecule. For instance, the RNA portion is highly variable and the protein SRP9 seems to have evolved into the SRP21 protein in fungi. In addition, we identified a secondary structure element in the Sacccharomyces RNA that has been inserted close to the Alu region. Together, these results provide important clues as to the structure, function and evolution of SRP

    Characterisation of the Fibroblast Growth Factor Dependent Transcriptome in Early Development

    Get PDF
    BACKGROUND: FGF signaling has multiple roles in regulating processes in animal development, including the specification and patterning of the mesoderm. In addition, FGF signaling supports self renewal of human embryonic stem cells and is required for differentiation of murine embryonic stem cells into a number of lineages. METHODOLOGY/PRINCIPAL FINDINGS: Given the importance of FGF signaling in regulating development and stem cell behaviour, we aimed to identify the transcriptional targets of FGF signalling during early development in the vertebrate model Xenopus laevis. We analysed the effects on gene expression in embryos in which FGF signaling was inhibited by dominant negative FGF receptors. 67 genes positively regulated by FGF signaling and 16 genes negatively regulated by FGF signaling were identified. FGF target genes are expressed in distinct waves during the late blastula to early gastrula phase. Many of these genes are expressed in the early mesoderm and dorsal ectoderm. A widespread requirement for FGF in regulating genes expressed in the Spemann organizer is revealed. The FGF targets MKP1 and DUSP5 are shown to be negative regulators of FGF signaling in early Xenopus tissues. FoxD3 and Lin28, which are involved in regulating pluripotency in ES cells are shown to be down regulated when FGF signaling is blocked. CONCLUSIONS: We have undertaken a detailed analysis of FGF target genes which has generated a robust, well validated data set. We have found a widespread role for FGF signaling in regulating the expression of genes mediating the function of the Spemann organizer. In addition, we have found that the FGF targets MKP1 and DUSP5 are likely to contribute to the complex feedback loops involved in modulating responses to FGF signaling. We also find a link between FGF signaling and the expression of known regulators of pluripotency

    Measuring the impact and distress of osteoarthritis from the patients' perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the internal construct validity of the Perceived Impact of Problem Profile (PIPP), a patient based outcome measure based on the International Classification of Functioning, Disability and Health (ICF), which assesses impact and distress, in an osteoarthritis (OA) cohort.</p> <p>Methods</p> <p>A questionnaire comprising the 23-item PIPP, which assesses five domains (mobility, participation, self care, psychological well being and relationships), the Western Ontario McMasters University Osteoarthritis Index (WOMAC), the General Well-Being Index (GWBI), and the Hospital Anxiety and Depression Scale (HADS) was posted to people with clinician diagnosed OA. Assessment of the internal construct validity of the PIPP was undertaken using Rasch analysis performed with RUMM2020 software and concurrent validity through comparator measures.</p> <p>Results</p> <p>Two hundred and fifty-nine participants with OA responded. Analysis of the five individual domains of the PIPP indicated that there was good fit to the Rasch model, with high person separation reliability. One item required removal from the Mobility subscale and the Participation subscale. There were strong correlations between the PIPP Mobility scores and the WOMAC disability and pain subscales (rho = .73 and rho = .68), and between the PIPP Psychological well-being and HADS Depression (rho = .71) and GWBI (rho = -.69). High inter-correlations between the impact and distress subscales for each domain (range rho = .85 to .96), suggested redundancy of the latter.</p> <p>Conclusion</p> <p>This study demonstrates that the PIPP has good psychometric properties in an OA population. The PIPP, using just the impact subscales, provides a brief, reliable and valid means of assessing the impact of OA from the individual's perspective and operationalizing the bio-psychosocial model by the application of a single multi-domain questionnaire.</p

    Structural basis of signal sequence surveillance and selection by the SRP–FtsY complex

    Get PDF
    Signal-recognition particle (SRP)-dependent targeting of translating ribosomes to membranes is a multistep quality-control process. Ribosomes that are translating weakly hydrophobic signal sequences can be rejected from the targeting reaction even after they are bound to the SRP. Here we show that the early complex, formed by Escherichia coli SRP and its receptor FtsY with ribosomes translating the incorrect cargo EspP, is unstable and rearranges inefficiently into subsequent conformational states, such that FtsY dissociation is favored over successful targeting. The N-terminal extension of EspP is responsible for these defects in the early targeting complex. The cryo-electron microscopy structure of this 'false' early complex with EspP revealed an ordered M domain of SRP protein Ffh making two ribosomal contacts, and the NG domains of Ffh and FtsY forming a distorted, flexible heterodimer. Our results provide a structural basis for SRP-mediated signal-sequence selection during recruitment of the SRP receptor

    Structures of SRP54 and SRP19, the Two Proteins that Organize the Ribonucleic Core of the Signal Recognition Particle from Pyrococcus furiosus

    Get PDF
    In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 Å resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely α-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 Å resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19•SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP

    Movements of Diadromous Fish in Large Unregulated Tropical Rivers Inferred from Geochemical Tracers

    Get PDF
    Patterns of migration and habitat use in diadromous fishes can be highly variable among individuals. Most investigations into diadromous movement patterns have been restricted to populations in regulated rivers, and little information exists for those in unregulated catchments. We quantified movements of migratory barramundi Lates calcarifer (Bloch) in two large unregulated rivers in northern Australia using both elemental (Sr/Ba) and isotope (87Sr/86Sr) ratios in aragonitic ear stones, or otoliths. Chemical life history profiles indicated significant individual variation in habitat use, particularly among chemically distinct freshwater habitats within a catchment. A global zoning algorithm was used to quantify distinct changes in chemical signatures across profiles. This algorithm identified between 2 and 6 distinct chemical habitats in individual profiles, indicating variable movement among habitats. Profiles of 87Sr/86Sr ratios were notably distinct among individuals, with highly radiogenic values recorded in some otoliths. This variation suggested that fish made full use of habitats across the entire catchment basin. Our results show that unrestricted movement among freshwater habitats is an important component of diadromous life histories for populations in unregulated systems

    Neural Basis of Self and Other Representation in Autism: An fMRI Study of Self-Face Recognition

    Get PDF
    Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made "self/other" judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others
    corecore