21 research outputs found

    Haemoglobin mass and running time trial performance after recombinant human erythropoietin administration in trained men

    Get PDF
    <p>Recombinant human erythropoietin (rHuEpo) increases haemoglobin mass (Hbmass) and maximal oxygen uptake (vË™ O2 max).</p> <p>Purpose: This study defined the time course of changes in Hbmass, vË™ O2 max as well as running time trial performance following 4 weeks of rHuEpo administration to determine whether the laboratory observations would translate into actual improvements in running performance in the field.</p> <p>Methods: 19 trained men received rHuEpo injections of 50 IUNkg21 body mass every two days for 4 weeks. Hbmass was determined weekly using the optimized carbon monoxide rebreathing method until 4 weeks after administration. vË™ O2 max and 3,000 m time trial performance were measured pre, post administration and at the end of the study.</p> <p>Results: Relative to baseline, running performance significantly improved by ,6% after administration (10:3061:07 min:sec vs. 11:0861:15 min:sec, p,0.001) and remained significantly enhanced by ,3% 4 weeks after administration (10:4661:13 min:sec, p,0.001), while vË™ O2 max was also significantly increased post administration (60.765.8 mLNmin21Nkg21 vs. 56.066.2 mLNmin21Nkg21, p,0.001) and remained significantly increased 4 weeks after rHuEpo (58.065.6 mLNmin21Nkg21, p = 0.021). Hbmass was significantly increased at the end of administration compared to baseline (15.261.5 gNkg21 vs. 12.761.2 gNkg21, p,0.001). The rate of decrease in Hbmass toward baseline values post rHuEpo was similar to that of the increase during administration (20.53 gNkg21Nwk21, 95% confidence interval (CI) (20.68, 20.38) vs. 0.54 gNkg21Nwk21, CI (0.46, 0.63)) but Hbmass was still significantly elevated 4 weeks after administration compared to baseline (13.761.1 gNkg21, p<0.001).</p> <p>Conclusion: Running performance was improved following 4 weeks of rHuEpo and remained elevated 4 weeks after administration compared to baseline. These field performance effects coincided with rHuEpo-induced elevated vË™ O2 max and Hbmass.</p&gt

    Adaptive framing based similarity measurement between time warped speech signals using Kalman filter

    Get PDF
    Similarity measurement between speech signals aims at calculating the degree of similarity using acoustic features that has been receiving much interest due to the processing of large volume of multimedia information. However, dynamic properties of speech signals such as varying silence segments and time warping factor make it more challenging to measure the similarity between speech signals. This manuscript entails further extension of our research towards the adaptive framing based similarity measurement between speech signals using a Kalman filter. Silence removal is enhanced by integrating multiple features for voiced and unvoiced speech segments detection. The adaptive frame size measurement is improved by using the acceleration/deceleration phenomenon of object linear motion. A dominate feature set is used to represent the speech signals along with the pre-calculated model parameters that are set by the offline tuning of a Kalman filter. Performance is evaluated using additional datasets to evaluate the impact of the proposed model and silence removal approach on the time warped speech similarity measurement. Detailed statistical results are achieved indicating the overall accuracy improvement from 91 to 98% that proves the superiority of the extended approach on our previous research work towards the time warped continuous speech similarity measurement

    Chitohexaose Activates Macrophages by Alternate Pathway through TLR4 and Blocks Endotoxemia

    Get PDF
    Sepsis is a consequence of systemic bacterial infections leading to hyper activation of immune cells by bacterial products resulting in enhanced release of mediators of inflammation. Endotoxin (LPS) is a major component of the outer membrane of Gram negative bacteria and a critical factor in pathogenesis of sepsis. Development of antagonists that inhibit the storm of inflammatory molecules by blocking Toll like receptors (TLR) has been the main stay of research efforts. We report here that a filarial glycoprotein binds to murine macrophages and human monocytes through TLR4 and activates them through alternate pathway and in the process inhibits LPS mediated classical activation which leads to inflammation associated with endotoxemia. The active component of the nematode glycoprotein mediating alternate activation of macrophages was found to be a carbohydrate residue, Chitohexaose. Murine macrophages and human monocytes up regulated Arginase-1 and released high levels of IL-10 when incubated with chitohexaose. Macrophages of C3H/HeJ mice (non-responsive to LPS) failed to get activated by chitohexaose suggesting that a functional TLR4 is critical for alternate activation of macrophages also. Chitohexaose inhibited LPS induced production of inflammatory molecules TNF-α, IL-1β and IL-6 by macropahges in vitro and in vivo in mice. Intraperitoneal injection of chitohexaose completely protected mice against endotoxemia when challenged with a lethal dose of LPS. Furthermore, Chitohexaose was found to reverse LPS induced endotoxemia in mice even 6/24/48 hrs after its onset. Monocytes of subjects with active filarial infection displayed characteristic alternate activation markers and were refractory to LPS mediated inflammatory activation suggesting an interesting possibility of subjects with filarial infections being less prone to develop of endotoxemia. These observations that innate activation of alternate pathway of macrophages by chtx through TLR4 has offered novel opportunities to cell biologists to study two mutually exclusive activation pathways of macrophages being mediated through a single receptor

    Design, construction and validation of an electrical impedance probe with contact force and temperature sensors suitable for in-vivo measurements

    No full text
    Bioimpedance spectroscopy measurements can be used for tissue characterization. These measurements can be performed in soft tissues by direct contact of a non-invasive probe consisting of two or four electrodes. The amount of force applied by users can be quite different, and the measurements can vary as a result. To compensate for this, we have built an electrical impedance probe (diameter 3.2 mm) with fibre optic contact-force and temperature sensors built in it. The different sensors of the probe were tested individually. The errors in magnitude and phase angle of the probe are <0.9% and <4°, respectively, for a 0.9% NaCl solution. The linear dynamic range of the force sensor was from 0 to 100 grams. An ex-vivo experiment on a section of proximal colon from a guinea-pig was performed. Twenty bioimpedance measurements were taken in a frequency range of 5 kHz to 1 MHz, while simultaneously recording the force applied. For an increase in contact pressure applied to tissue from 0 to 15.4 kPa, the maximum change in resistivity was 33% at 5 kHz and the minimum was 6.6% at 142 kHz. The probe is small enough to be introduced via the instrument port of an endoscope.Mr. A. Ruiz-Vargas acknowledges Ms. Lauren Keightley and Dr. Reizal Mohd Rosli for their help with the experiment; Mr. Jon Lockwood from OneTemp Pty Ltd for supplying the authors with a 10 cm of platinum wire. The PEEK parts for the tip sensor were fabricated at the South Australian node of the Australian National Fabrication Facility under the National Collaborative Research Infrastructure Strategy
    corecore