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Abstract

Similarity measurement between speech signals aims at calculating the degree of similarity using acoustic features that has 
been receiving much interest due to the processing of large volume of multimedia information. However, dynamic properties 
of speech signals such as varying silence segments and time warping factor make it more challenging to measure the simi-
larity between speech signals. This manuscript entails further extension of our research towards the adaptive framing based 
similarity measurement between speech signals using a Kalman ilter. Silence removal is enhanced by integrating multiple 
features for voiced and unvoiced speech segments detection. The adaptive frame size measurement is improved by using 
the acceleration/deceleration phenomenon of object linear motion. A dominate feature set is used to represent the speech 
signals along with the pre-calculated model parameters that are set by the oline tuning of a Kalman ilter. Performance is 
evaluated using additional datasets to evaluate the impact of the proposed model and silence removal approach on the time 
warped speech similarity measurement. Detailed statistical results are achieved indicating the overall accuracy improvement 
from 91 to 98% that proves the superiority of the extended approach on our previous research work towards the time warped 
continuous speech similarity measurement.

Keywords Adaptive speech segmentation · Speech processing · Dynamic time warping · Spoken term detection · Kalman 
ilter

1 Introduction

There has been a steady improvement in speech signal match-
ing methods for past three decades. The variety of methods 
has been devolved from isolated word matching to continuous 
speech recognition (Akila and Chandra 2013; Lawrence et al. 
1989; Pour and Farokhi 2009; Olivier 1995). In the template 
based speech modelling, recognition is performed by match-
ing the test word (utterance) with the all stored template of 

words and calculating the matching score based on acoustic 
features (Akila and Chandra 2013). Dynamic Time Warping 
(DTW) and Vector Quantization (VQ) based speech recogni-
tion is the best examples of such systems. As the speech signal 
contains dynamic features, development of a robust speech 
signal matching approach is the challenging task. Noisy 
speech, time warping phenomenon, and connected words 
and phonemes in continuous speech are common examples of 
such dynamics that make the speech similarity measurement 
task more challenging. Among these issues, time warping in 
speech signals has been a challenge to deal with. Multiple 
speech recordings having the same contents (i.e. words and 
phonemes) by a speaker may produce diferent time durations. 
Consequently, the devolution of the time warping factor to 
sub-word and hence phonemes level degrades the similarity 
matching performance (Wasiq and Rob 2015).

Most of the recent improvements are made in the related 
area in terms of Spoken Term Detection (STD) that is based 
on the partial information extraction (keyword) from a con-
tinuous speech signal (Timothy et al. 2009; Chun-An and 
Lin-Shan 2013; Wasiq and Kaya 2017; Anguera et al. 2013). 
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Similarly, Query-by-Example (QbyE) methods, keyword/
iller methods, and large vocabulary continuous speech rec-
ognition methods are some other approaches that represent 
some sort of similar work (Anguera et al. 2014; Joho and 
Kishida 2014; Tejedor et al. 2013; Javier et al. 2015). Over 
the past decade, most of the STD based research is focused 
on novelty of template representation methods (Abad et al. 
2013; Marijn et al. 2011; Haipeng et al. 2011). Recent work 
introduced in (Abad et al. 2013) addresses the fusion of 
heterogeneous STD system. In the irst step, a number of 
heuristics are hypothesized for the similarity score estima-
tion and then a linear logistic regression method is used for 
the combination of these scores. The performance is meas-
ured using eight diferent techniques individually as well as 
by fusing them together using linear regression. Similarly, 
Wasiq and Kaya (2017) proposed an efective approach for 
STD based on acoustic segment models. This method amal-
gamates the self-organizing models, query matching, and 
query modelling processes to construct an eicient STD 
approach. Despite the efective performances of aforemen-
tioned approaches for STD, a further improvement is needed 
to deal with time warping issues in continuous speech simi-
larity measurement as presented in the proposed research.

The literature contains a number of approaches in relation 
to QbyE and STD that use some sort of variations in DTW 
(Yaodong and James 2011a, b; Chan and Lee 2010; Tham-
biratmann and Sridharan 2007). However, in DTW based 
approaches, the computation time is linear to the number of 
frames (i.e. signal length) to be searched through (Cheng-
Tao et al. 2014). Extensive eforts were made to enhance 
the DTW performance in terms of computation time such 
as segment-based DTW proposed by Chun-An and Lin-
Shan (2011), lower-bound estimation for DTW (Yaodong 
and James 2011a, b; Yaodong et al. 2012), and a locality 
sensitive hashing technique for indexing speech frames pre-
sented by Jansen and Van Durme (2012). Speech match-
ing presented by Chotirat and Eamonn (2005) reported the 
lack of ability of the conventional DTW to deal with the 
time warping phenomenon. Likewise, a signal dependent 
word recognition system is presented by Yegnanarayana and 
Sreekumar (1984) where an enhanced DTW is proposed 
based on a weight factor. The query speech signal is par-
titioned into voiced, unvoiced and silence segments using 
the weight factor resulting better performance for the time 
warped speech matching. Despite extensive research eforts, 
existing approaches are unable to handle the time warping 
phenomenon robustly because of static frame length. Alter-
natively, time warped distance measurement between test 
and template frames may be improved using a varying frame 
size corresponding to dynamically changing speed of spoken 
words. A state estimator is needed to dynamically predict 
the query frame position in reference speech pattern. The 
Kalman ilter (KF) seems a good candidate for such a state 

estimation by modeling variable speed and noise covariance 
in an efective way. The KF is a recursive state estimator 
with diverse application areas that include object tracking, 
navigation systems, multi-sensor data fusion, control sys-
tems, manufacturing, noise reduction in signal, and free-way 
traic modeling Mohinder and Angus (2001).

This manuscript propose a time warped similarity measure-
ment approach in extension to our previous study Wasiq and 
Rob (2015). A number of signiicant improvements are made 
in terms of silence removal by integrating multiple approaches 
for voiced and unvoiced detection, state modeling and con-
tinuously varying frame size using acceleration phenomenon 
of object linear motion, oline tuning of the KF to retrieve the 
optimal parameters, enhanced feature extraction, evaluation 
methods and detailed statistical analysis of the results as dis-
cussed in following sections. As speech signals are analyzed 
frame by frame, each frame of test speech is considered as an 
individual unit moving along the time-axis of reference speech 
with a certain speed. The object linear motion is modeled to 
estimate the test and reference frames corresponding posi-
tions within the test and reference speech signals respectively. 
Simultaneously, feature based best matched reference frame 
position corresponding to query frame is also calculated. Both 
position estimates are then forwarded to a KF along with the 
noise covariance which recursively predicts the inal position 
estimate for query frame. At each time step, template frame 
size changes according to the acceleration/deceleration calcu-
lated using the KF state estimate.

2  Methods and materials

2.1  Speech corpuses and dataset

A variety of proprietary and open source speech datasets 
are used to conduct experiments in the proposed research. 
The dataset consists of recorded speeches as short sen-
tences, isolated utterances, long phrases and paragraphs; 
that were acquired from diferent genders, age groups, and 
ethnic background people. To conduct a case study, we 
have recorded a speech dataset of 50 speakers (37 male, 
13 female) that consists of connected words in the form of 
digits (ive recordings for each digit by each speaker), short 
phrases of up to 10 s (ive sentences by each speaker) and 
long phrases of up to 20 s (ive paragraph bay each speaker). 
For recording purpose, the SENNHEISER e935 is used 
which is a vocal dynamic microphone that consists a built 
in noise ilter. The dataset is recorded in a noise free research 
lab environment. Although, the proposed approach is purely 
based on acoustic features without the transcribed data, how-
ever; to prove the concept of language independence, the 
dataset is recorded for multiple languages that include Eng-
lish, Arabic and Urdu. For the long speech phrase tracking 
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experiments; a speech corpus from American Rhetoric’s (top 
100 speeches) (Michael 2013) is used. It is based on hours 
of speeches recorded by diferent people on diferent topics. 
Moreover, two speech corpuses, Mobio (McCool et al. 2012) 
and Wolf (Hung and Chittaranjan 2010) are obtained from 
IDIAP research institute which consist of huge amount of 
speech data recorded by diferent speakers.

2.2  Pre‑processing and search window

A number of techniques are amalgamated in the proposed 
method to deal with silence removal, frame size adaptation, 
and time warping challenges. In the irst step, speech signals 
are forwarded to a pre-processing unit to enhance the qual-
ity in terms of silence removal as presented in Fig. 1. The 
silence removal is composed of two diferent approaches for 
voiced, unvoiced and silence segments detection. A robust 
pitch tracking method proposed by Zahorian and Hu (2008) 
is used to estimate the fundamental frequency  (F0) using 
multiple information resources.

Acquired speech is segmented and forwarded to the pitch 
tracking algorithm proposed by Zahorian and Hu (2008) that 
searches for the existence of  F0 components in each segment 
of input speech. As the  F0 doesn’t exist in the silence part of 
speech, these frames can be eliminated. All frames having 
the  F0 components are produced as ‘voiced’ segments. For 
the ‘unvoiced frame detection’ energy and Zero Cross Rate 
(ZCR) features are used as proposed by Sharma and Rajpoot 
(2013) shown in Fig. 2.

Output ‘voiced and unvoiced’ frames produced from 
aforementioned approaches are combined together to recon-
struct a silence free speech signal which is used for fur-
ther processing. Figure 3 shows the sequential steps used 
for the silence segments removal and reconstruction of the 
silence free speech signal. The silence free speech signals 
are then forwarded to a speech framing process that recur-
sively selects a ixed length frame and forwards it for further 
processing until the end of test or reference speech. Because 
of the slowly varying nature of the speech signal, it is com-
mon to process speech in blocks (also called “frames”) of 
10–50 ms over which the speech waveform can be assumed 
as a stationary signal (Ravindran et al. 2010). In the pro-
posed approach, the test speech signal is partitioned into 
30 ms frames and forwarded to feature extraction as shown 
in Fig. 1.

Mel Frequency Cepstral Coeicients (MFCC) has been 
used as the most dominant features of human speech (Dave 
2013; Dhingra et al. 2013; Shahzadi and Azra 2013; Ezzaidi 
and Jean 2004) are extracted for test and reference frames and 
a Euclidean distance based degree of similarity is calculated 
between the means of MFCCs vectors of test and reference 
frames. A search window is defined within the reference 
speech and the query frame is coasted by overlapped steps to 
measure the likelihood at each step as shown in Fig. 4. The 
length of search window is set twice to template frame size ‘w’. 
As a result, the maximum likelihood estimate (MLE) of the 
position is calculated from the similarity distribution. For each 
overlapped frame shift i (i = 1, 2 ...n and n = number of shifts), 
the likelihood positions f(li) are calculated using:

Fig. 1  Overall sequential pro-
cessing of proposed speech sig-
nal matching using state model 
and Kalman ilter. GTP ground 
truth position, KFP Kalman 
ilter estimated position
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where

where ‘L’ is the total length of search window, and lcur is the 
current position (position before the MLE calculation) of test 
frame in the search window while considering the boundary 

(1)f (li) = lcur + i(w − Ω)
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constraints ‘l’ for each frame shift. The ‘Ω’ is overlap inter-
val within the search window. In order to obtain a normal-
ized probability distribution, we used:

where Фl is the vector containing similarities scores meas-
ured by Euclidean distance for f(li) with ‘n’ elements.

Position of the best matched reference frame is calculated 
using the ‘lest’ and ‘fl’ vectors which is then used by KF as 
input parameter for observed position at current state.

2.3  Linear motion based state model and Kalman 
ilter

The proposed method for a speech similarity measure uses 
the recursive process of KF to estimate the instantaneous 
positions of test speech frames in the reference speech pat-
terns. At each time step, the query frame position is esti-
mated using a linear motion model which is fused with the 
position observed by aforementioned feature based similarity 
measure. Thus the process of linear motion based test frame 
position estimate is needed to be described by a linear system 
such that:

(2)Φ
l
=

Φ
l
i

∑n

i=1
Φ

l
i

(3)l
est

= MLE = arg max
i

Φ
l
i

Fig. 2  Silence removal process 
using Energy, ZCR and  F0 
(Sharma and Rajpoot 2013)

Fig. 3  Block diagram for 
silence removal from speech 
signal using pitch tracking and 
time domain features

Fig. 4  Overlapped progression (1a–1d) of query frame along the ref-
erence speech pattern and search window. Second cycle starts from 
2a and process repeated until end of reference speech signal
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In above equations, ‘x’ represents the state at time ‘t’ ‘A’ 
is the state matrix, ‘B’ is input matrix, and ‘H’ is the output 
matrix. Dynamically changing size of reference frame is a 
known input ‘u’ to the system. System output is represented by 
‘z’ along with the process noise ‘f’ and measurement noises ‘g’. 
In terms of speech frame matching, time warping phenomenon 
causes the process noise generation. Following these facts, the 
linear motion model is implemented for query frame position 
estimate. Let ‘vt’ and ‘vt+1’ represent the initial and inal veloci-
ties of query frame progression along the reference speech pat-
tern at time ‘t’ and ‘∆w’ is the diference between successive 
reference frames sizes then, velocity at current state will be:

In the start, sample rate (8000 samples/s) of query frame is 
set to ‘vt’ which is updated according to ‘∆w’ recursively and 
‘T’ represents the static interval (i.e. 30 ms) of query frame. 
Position of the query frame in reference speech pattern is then 
represented as:

where ‘pt+1’ is the query frame position at current time. 
Equation 7 indicates the query frame position dependency 
on varying template frame size ‘∆w’ which relects the time 
warping phenomenon in speech signals. Combining the 
above set of equations (Eqs. 4, 5, 6, and 7) the linear motion 
system can be represented as:

An eicient position and velocity estimation for the query 
frame would produce a feedback control system which is 
achieved by incorporation of the KF. The process and meas-
urement noises are assumed to be independent variables 
which are set by the oline tuning of KF using a Receiver 
Operating Characteristics (ROC) curve points discussed later 
(Sect. 2.3.2). The process and measurement noise covariance 
matrices can be represented as:

(4)xt+1
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where ‘Q’ represent the standard deviation in the estimated 
state (i.e. position and velocity) and ‘R’ represents the 
standard deviation in the measurement of noise covariance. 
The query frame state predicted by aforementioned setup 
(Eqs. 8, 9, 10, and 11) is forwarded to the KF update (cor-
rection) step which corrects the estimate by means of ‘Q’, 
‘R’, Kalman gain ‘k’, and state estimate ‘x’. Mathematically, 
the update step can be modeled as:

where

Equations 12, 13, and 14 represent the correction step 
in KF which uses the manipulation of matrices. Test frame 
position estimate by feature based similarity measure ‘lest’ 
and predicted position by linear motion model ‘x’ at current 
time ‘t’ are used in Eq. 13 to get an updated state estimate. 
The Kalman gain ‘k’ in Eq. 12 shows the dependency of the 
state estimate upon noise covariance. The entire setup (pre-
dict and correct) runs recursively to measure the current test 
speech frame position within the search region of reference 
speech pattern while adapting the template frame size ‘∆w’ 
at each time step as described in Sect. 2.3.1.

2.3.1  Frame size and search region adaptation

Once the position for the current state is estimated by KF 
model, the template frame size is updated according to the 
calculated diference ‘∆w’ using:

where ‘wt+1’ is the estimated template frame size for next 
time step corresponding to acceleration/deceleration amount 
(‘∆w’) at current time which represents the time warping 
phenomenon. Figure 5 presents an example of the recursive 
frame size adaptation phenomenon in the proposed speech 
similarity measurement approach. It can be analyzed that 
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the template frame size changes instantly using Eq. 16 and 
relects the natural time warping phenomenon in a speech 
signal.

2.3.2  Tuning the Kalman ilter

Practically, the measurement noise covariance ‘R’ can be 
measured prior to ilter operation. This is because during 
the ilter operation, as the process is needed to be meas-
ured, the process noise covariance ‘Q’ measurement can 
be a challenge. Generally speaking, a robust ilter perfor-
mance may be achieved by tuning the ilter parameters ‘Q’ 
and ‘R’. Most of the time; this tuning is performed oline, 
frequently with the help of another (distinct) KF in a process 
generally referred to a system identiication (Mohinder and 
Angus 1993; Greg and Gary 2006). It can be analyzed from 
measurement update that in case of constant values of Q and 
R, estimation error covariance Pt and Kalman gain kt will 
stabilize quickly and then remain constant.

This means that these parameters can be computed prior 
to ilter operation by oline tuning or by determining the 
steady state values. Variations in the values of ‘Q’ and 
‘R’ indicate the dependency (level of trust) of the system. 
Greater value for a variance means less dependency on the 
corresponding measure and vice versa. In the proposed 
method, values for measurement and process variances are 
validated using the ROC curve points that are retrieved by 
varying them from 0 to 1 with a lag of 0.01 as shown in 
Fig. 6. The entire setup is tested on sample speech dataset 
described earlier and the best values for process and meas-
urement noise variances are selected based on the best com-
promise between sensitivity and speciicity.

2.4  Experimental setup and performance 
evaluation

To achieve the optimal performance in terms of time-
warped speech matching, a number of factors are set by 
iteratively analyzing the experimental results and updating 

the setup values. These factors consist of KF tuning, record-
ing devices, processing tools, and recording environment. 
Table 1 shows the simulation settings for the experimenta-
tion of speech tracking performance. Because of the tem-
plate frames overlapping, a tolerance of half frame size for 
the matching decision is set throughout the experiment con-
duction. The evaluation methodology entails experiments for 
multiple settings that involve KF variables setting, silence 
removal approaches, and similarity measurement methods.

A number of metrics have been used in the literature 
for the validation of query term similarity measurement. 
However, the most relevant are the gold standards used for 
the performance evaluation of a binary classiier (Solu-
ade 2010). This is because the output of test and reference 
speech frames is in the binary form (i.e. match or mismatch). 
Table 2 presents the detailed metrics that are used for the 
validation of the proposed speech similarity measurement 
approach.

3  Results and discussion

Experimental results for proposed approach and state-of-
the-art segmented DTW based approach are achieved using 
sample dataset described earlier. The performance diference 
between KF based adaptive framing and the search window 
based non-adaptive approach is presented using the gold 
standard metrics addressed in Table 2. It is observed that 
the similarity matching and speech tracking performance 
degrades while using the non-adaptive framing. This is 
because in contrast to static frame size, the adaptive fram-
ing handles the time warping phenomenon better way. Also, 
use of the KF and linear motion model provide the substi-
tute tracking information that never loses the tracking path 
when a mismatch or false positive occurs. This proves the 
reliability of the proposed approach as compared to seg-
mented DTW method as well as our previous approach 
(Wasiq and Rob 2015) that are considered as a baseline in 
our experiments. In the proposed approach, the concept of 

Fig. 5  Reference speech frame size adaptation at each time step for 
corresponding time warping phenomenon in test speech

Fig. 6  KF tuning in terms of noise variance selection based on best 
compromise between sensitivity and speciicity
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acceleration/deceleration amount (Eq. 15, ‘∆w’) from the 
motion model produces a continuously varying template 
frame size as shown in Figs. 4 and 5. This phenomenon 
makes the entire system more efective as compared to our 
previous study (Wasiq and Rob 2015) for which ‘∆w’ was 
updated based on estimated frame position. Thus, overall 
accuracy is increased from 91 to 98.01% that indicates the 
signiicance of acceleration based ‘∆w’ in the proposed 
method.

A substantial decrement of 27% in the sensitivity and 32% 
in tracking accuracy of the proposed approach is observed 
in Table 3 when adaptive framing is changed with non-
adaptive frame size. Likewise, 15 and 25% decrements in 
the performances of DTW in terms of sensitivity and track-
ing accuracy respectively, is measured. Consequently, the 
desired speech tracking accuracy is signiicantly afected and 

is unable to maintain the tracking path information because 
of mismatches and false negatives. This proves the novelty 
of the dynamic frame size concept as introduced in this 
research study.

The likelihood ratios (LR+, LR−) are considered one of 
the useful metrics to measure the diagnostic accuracy. In 
terms of test and template frames matching, LR presents 
the probability of a test with test frame match divided by 
the probability of the same test with test frame mismatch. 
Larger LR+ consist more information than smaller LR+. 
On the other hand, smaller LR− consist more information 
than larger LR−. To simplify the LR values, a relative mag-
nitude is considered by taking the reciprocal of LR+. It can 
be analyzed from Table 3 that the LR− for KF is negligible 
(0.008) as compared to 0.12 for DTW which indicates the 
robustness of the proposed approach. Similarly, F-score is 

Table 1  Initial variables 
setting of Kalman ilter and 
motion based state model in the 
proposed method

Hardware speciications

 Processor: Intel® Core™ i5 CPU
 Installed memory: 4 GB
 System type: 32 bit operating system
 OS: Window 7 Home Premium
 H-Disk: 500 GB
 Microphone: SENNHEISER e935

Simulation tools Matlab R2009a, PRAAT, SFS, Audacity

Sampling frequency 8000 Hz

Initial frame size 240 samples

Overlap amount 50%

Search region 2 × frame size = 480 samples

Tolerance for position estimate ½ template frame

Kalman ilter variables

 T 0.03 s

 pt 0

 pt+1 240 (30 ms)

 ∆w 0 at 1st step then changes dynamically

 ft 0.72

 gt 0.28

Table 2  Statistical metrics used for performance evaluation of the proposed approach

Condition as determined by gold standard

Total population Condition positive Condition negative

Positive match True positive False positive

Negative match False negative True negative

Accuracy (ACC) = (Σ true positive + Σ true 
negative)/Σ total population

True positive rate (TPR), sensitivity, 
recall = Σ true positive/Σ condition posi-
tive

(Type I error), false positive rate (FPR) = Σ 
false positive/Σ condition negative

(Type II error), false negative rate 
(FNR) = Σ false negative/Σ condition 
positive

True negative rate (TNR), Speciicity 
(SPC) = Σ true negative/Σ condition nega-
tive

F1 score = 2 × precision × recall/(precision + recall) Positive likelihood ratio (LR+) = TPR/FPR Negative likelihood ratio (LR−) = FNR/TNR
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a measure that considers both precision and recall to meas-
ure the system performance. Table 3 demonstrates that the 
F-score value for KF based approach is increased to 0.97 as 
compared to 0.84 of the DTW method. Type I and Type II 
errors indicate the recognizer failure rates related to FP and 
FN respectively. These metrics have been represented in a 
number of ways in the related area including mean square 
error and absolute erros as most commonly used. Table 3 
shows the ‘µ’ (mean) and ‘σ’ standard deviation for both 
types of error for diferent approaches while using the same 
speech dataset.

Computation time is also an important factor that is 
analyzed for the proposed KF based approach and DTW 
approaches. Table  3 shows the average computational 
costs for these approaches that demonstrate the variations 
in computational time for varying lengths of test and ref-
erence speech signals. It is observed that the KF based 
approach have a lead over the conventional approaches. This 
is because of computation time in DTW is linear with the 
number of frames to be searched through (Cheng-Tao et al. 
2014). Despite of the fact that constrained DTW reduces the 
average time complexity to 1.6 s, yet its computation time is 
greater than the proposed approach (1.3 s) that measures the 
Euclidean distance based on selected features.

3.1  Decision boundary selection

The trade-of between true positive hits and true negative 
rejection rate is based on the threshold value that is used 
as a decision boundary for test and template frames match/
mismatch. Figure 7 presents a three dimensional relation 
showing the true positive rate, false positive rate and thresh-
old values. To set a threshold value for the match/mismatch 
decision boundary, an ROC curve is achieved by varying the 
threshold from 0 to 1 with a lag of 0.01. It means that the 
template frame was rejected if its matching score with the 

Table 3  Statistical results for proposed KF based adaptive/static 
framing and segmented DTW approaches

Evaluation metrics KF approach Segmented 
DTW 
approach

Adaptive framing

 Sensitivity 0.9918 0.8999

 Speciicity 0.9726 0.8702

 Matching accuracy 0.9801 0.8958

 1/LR+ 0.0276 0.1578

 LR− 0.0084 0.1229

 F-score 0.9713 0.8487

 Tracking accuracy (%) 1 0.9484

 Avg. execution time (s) 1.3747 3.0419

 Type I error

  µ 0.0011 0.0332

  σ 0.0016 0.0960

 Type II error

  µ 3.1270e-04 0.0282

  σ 8.8200e-04 0.0735

Non-adaptive framing

 Sensitivity 0.7299 0.7517

 Speciicity 0.9856 0.9421

 Matching accuracy 0.9415 0.9121

 1/LR+ 0.0182 0.0909

 LR− 0.2717 0.2560

 F-score 0.8957 0.8698

 Tracking accuracy (%) 0.6822 0.6991

 Type I error

  µ 0.0011 0.0047

  σ 0.0016 0.0052

 Type II error

  µ 3.1270e-04 0.1462

  Σ 8.8200e-04 0.2237

Fig. 7  Measuring the opti-
mal threshold value for query 
and reference frames match/
mismatch decision using ROC 
curve
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corresponding test frame is less than the threshold value. 
The best threshold value (0.85) for the proposed approach 
is selected based on a best compromise between sensitivity 
and speciicity as shown in Fig. 7.

In addition to adaptive framing, appropriate selection of 
a silence removal approach also afects the performance. 
There are a number of techniques in the literature that use 
time and frequency domain features (e.g. Energy, zero cross 
rate, spectral centroid) and pattern recognition methods to 
remove the silence part of speech utterance (Sharma and 
Rajpoot 2013; Tushar et al. 2014; Sen and Graduate 2006; 
Liscombe and Asif 2009; Saha et al. 2005; Giannakopou-
los 2014). However, in the proposed work, a more efective 
approach for silence removal is used that combines a robust 

pitch tracking algorithm for the voiced segment detection 
and a ZCR and energy based approach for the unvoiced seg-
ment detection. Figure 8 shows the performance statistics 
for diferent silence removal approaches. It can be observed 
that the sensitivity, speciicity, frames matching accuracy, 
and speech tracking accuracy are decreased 2, 5, 3, and 2% 
respectively using traditional silenced removal approach 
as compared to the proposed approach that use multiple 
resources to remove the silence part of speech.

Figure 9 demonstrates a test case for a time warped 
speech signal matching using the speech data presented in 
Fig. 10. The concept of adaptive framing and search window 
is shown in three-dimensional representation of time warped 
speech similarity measurement. Intensity of the color in 

Fig. 8  Statistical performance 
analysis of the time warped 
speech signal matching using 
conventional and proposed 
silence removal approaches

Fig. 9  Three-dimensional representations of frame size adaptation in 
proposed speech similarity measurement for test case data in Fig. 10. 
For 10 k samples of reference speech, the varying width of vertical 

entries (tiles) indicates frame level time warping; leading to pro-
duce overall time warped path based on corresponding frames in test 
speech of 12 k samples
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Fig. 9 from blue to red indicates the match/mismatch score 
respectively. The dynamics in the template frame size can be 
analyzed in Fig. 9 that indicates the adaptive framing with 
respect to the varying speaking rate of input speech. It is also 
observed that there exists at least one frame in the search 
window of the reference speech pattern exceeding the match/
mismatch decision threshold that indicates the robustness 
in sensitivity leading to consistency in the tracking path. 
In results, the proposed approach is able to deal the time 
warping phenomenon in an eicient way. Thus, for 120,000 
samples of test speech in contrast to 106,000 samples of 
reference speech, KF based adaptive framing provided the 
robust similarity matches between test and reference speech 
frames without losing the tracking path.

4  Conclusions and future directions

In general, speaking rate variations produce the time warped 
speech that afects the performance of similarity measure. 
This manuscript entails further extension of our previous 
research (Wasiq and Rob 2015) towards the adaptive framing 
based continuous speech signal matching which deals with 
the time warping phenomenon more eiciently. Deployment 
of acceleration/deceleration based frame size adaptation and 
standard MFCC features produced signiicant improvements 
in our previous model. Likewise, the oline tuning of the KF 
produced the optimistic parameters for the statistical model. 
Silence removal approach is improved by integrating mul-
tiple algorithms for voiced and unvoiced segment detection 
in continuous speech signal. Experiments demonstrated that 
the proposed approach outperforms our previous approach 
and other existing methods in terms of speech similarity 
matching. Although, the existing enhanced version of DTW 
combines multiple distance matrixes to generate more reli-
able decision boundary however; this approach is unable 
to recover the path for a continuous speech signal match-
ing/tracking in case of mismatches. This issue is resolved 
in the proposed approach by using a dynamic state model 

that deploys the equations of motion to predict the tempo-
ral information for the next state. The use of Kalman ilter 
makes it more robust in terms of match/mismatch frame 
position estimation.

There is always an uncertainty in the model (process) 
which indicates the error in process and the aim is to mini-
mize this error. The beauty of KF is that it recursively 
updates the states according to noise covariance which plays 
multiple roles. Firstly, it measure the quantity of error exists 
in terms of process and measurement noise. Secondly, the 
noise variance provides the degree of dependency on both 
observations. In other words, noise covariance assigns initial 
weights to each observation on the basis of which a KF tunes 
itself recursively. On the other hand, noise variance is not 
considered in the existing time warping techniques which 
can deal better with process and measurement uncertainties. 
There are some possible extensions that can be considered as 
future research direction. For instance, system reliability can 
be further improved using multiple information resources 
(e.g. similarity measure, feature set) which can be fused 
together using theory of evidence.
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