755 research outputs found

    Stimulation of immature lung macrophages with intranasal interferon gamma in a novel neonatal mouse model of respiratory syncytial virus infection

    Get PDF
    Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral death in infants. Reduced CD8 T-cells and negligible interferon gamma (IFNĪ³) in the airway are associated with severe infant RSV disease, yet there is an abundance of alveolar macrophages (AM) and neutrophils. However, it is unclear, based on our current understanding of macrophage functional heterogeneity, if immature AM improve viral clearance or contribute to inflammation and airway obstruction in the IFNĪ³-deficient neonatal lung environment. The aim of the current study was to define the age-dependent AM phenotype during neonatal RSV infection and investigate their differentiation to classically activated macrophages (CAM) using i.n. IFNĪ³ in the context of improving viral clearance. Neonatal and adult BALB/cJ mice were infected with 1Ɨ106 plaque forming units (PFU)/gram (g) RSV line 19 and their AM responses compared. Adult mice showed a rapid and robust CAM response, indicated by increases in major histocompatibility complex class II (MHC II), CD86, CCR7, and a reduction in mannose receptor (MR). Neonatal mice showed a delayed and reduced CAM response, likely due to undetectable IFNĪ³ production. Intranasal (i.n.) treatment with recombinant mouse IFNĪ³ (rIFNĪ³) increased the expression of CAM markers on neonatal AM, reduced viral lung titers, and improved weight gain compared to untreated controls with no detectable increase in CD4 or CD8 T-cell infiltration. In vitro infection of J774A.1 macrophages with RSV induced an alternatively activated macrophage (AAM) phenotype however, when macrophages were first primed with IFNĪ³, a CAM phenotype was induced and RSV spread to adjacent Hep-2 cells was reduced. These studies demonstrate that the neonatal AM response to RSV infection is abundant and immature, but can be exogenously stimulated to express the antimicrobial phenotype, CAM, with i.n. rIFNĪ³. Ā© 2012 Empey et al

    Knowledge discovery for friction stir welding via data driven approaches: Part 2 ā€“ multiobjective modelling using fuzzy rule based systems

    Get PDF
    In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ā€˜Pareto-optimalā€™ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge

    Community-based Rehabilitation Training after stroke: Protocol of a pilot randomised controlled trial (ReTrain)

    Get PDF
    Introduction: The Rehabilitation Training (ReTrain) intervention aims to improve functional mobility, adherence to poststroke exercise guidelines and quality of life for people after stroke. A definitive randomised controlled trial (RCT) is required to assess the clinical and cost-effectiveness of ReTrain, which is based on Action for Rehabilitation from Neurological Injury (ARNI). The purpose of this pilot study is to assess the feasibility of such a definitive trial and inform its design. Methods and analysis: A 2-group, assessor-blinded, randomised controlled external pilot trial with parallel mixed-methods process evaluation and economic evaluation. 48 participants discharged from clinical rehabilitation despite residual physical disability will be individually randomised 1:1 to ReTrain (25 sessions) or control (exercise advice booklet). Outcome assessment at baseline, 6 and 9 months include Rivermead Mobility Index; Timed Up and Go Test; modified Patient-Specific Functional Scale; 7-day accelerometry; Stroke Self-efficacy Questionnaire, exercise diary, Fatigue Assessment Scale, exercise beliefs and self-efficacy questionnaires, SF-12, EQ-5D-5L, Stroke Quality of Life, Carer Burden Index and Service Receipt Inventory. Feasibility, acceptability and process outcomes include recruitment and retention rates; with measurement burden and trial experiences being explored in qualitative interviews (20 participants, 3 intervention providers). Analyses include descriptive statistics, with 95% CI where appropriate; qualitative themes; intervention fidelity from videos and session checklists; rehearsal of health economic analysis. Ethics and dissemination: National Health Service (NHS) National Research Ethics Service approval granted in April 2015; recruitment started in June. Preliminary studies suggested low risk of serious adverse events; however (minor) falls, transitory muscle soreness and high levels of postexercise fatigue are expected. Outputs include pilot data to inform whether to proceed to a definitive RCT and support a funding application; finalised Trainer and Intervention Delivery manuals for multicentre replication of ReTrain; presentations at conferences, public involvement events; internationally recognised peer-reviewed journal publications, open access sources and media releases

    Spatially valid proprioceptive cues improve the detection of a visual stimulus

    Get PDF
    Vision and proprioception are the main sensory modalities that convey hand location and direction of movement. Fusion of these sensory signals into a single robust percept is now well documented. However, it is not known whether these modalities also interact in the spatial allocation of attention, which has been demonstrated for other modality pairings. The aim of this study was to test whether proprioceptive signals can spatially cue a visual target to improve its detection. Participants were instructed to use a planar manipulandum in a forward reaching action and determine during this movement whether a near-threshold visual target appeared at either of two lateral positions. The target presentation was followed by a masking stimulus, which made its possible location unambiguous, but not its presence. Proprioceptive cues were given by applying a brief lateral force to the participantā€™s arm, either in the same direction (validly cued) or in the opposite direction (invalidly cued) to the on-screen location of the mask. The dā€² detection rate of the target increased when the direction of proprioceptive stimulus was compatible with the location of the visual target compared to when it was incompatible. These results suggest that proprioception influences the allocation of attention in visual spac

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Are Canadian General Internal Medicine training program graduates well prepared for their future careers?

    Get PDF
    BACKGROUND: At a time of increased need and demand for general internists in Canada, the attractiveness of generalist careers (including general internal medicine, GIM) has been falling as evidenced by the low number of residents choosing this specialty. One hypothesis for the lack of interest in a generalist career is lack of comfort with the skills needed to practice after training, and the mismatch between the tertiary care, inpatient training environment and "real life". This project was designed to determine perceived effectiveness of training for 10 years of graduates of Canadian GIM programs to assist in the development of curriculum and objectives for general internists that will meet the needs of graduates and ultimately society. METHODS: Mailed survey designed to explore perceived importance of training for and preparation for various aspects of Canadian GIM practice. After extensive piloting of the survey, including a pilot survey of two universities to improve the questionnaire, all graduates of the 16 universities over the previous ten years were surveyed. RESULTS: Gaps (difference between importance and preparation) were demonstrated in many of the CanMEDS 2000/2005(Ā® )competencies. Medical problems of pregnancy, perioperative care, pain management, chronic care, ambulatory care and community GIM rotations were the medical expert areas with the largest gaps. Exposure to procedural skills was perceived to be lacking. Some procedural skills valued as important for current GIM trainees and performed frequently (example ambulatory ECG interpretation) had low preparation ratings by trainees. Other areas of perceived discrepancy between training and practice included: manager role (set up of an office), health advocate (counseling for prevention, for example smoking cessation), and professional (end of life issues, ethics). CONCLUSION: Graduates of Canadian GIM training programs over the last ten years have identified perceived gaps between training and important areas for practice. They have identified competencies that should be emphasized in Canadian GIM programs. Ongoing review of graduate's perceptions of training programs as it applies to their current practice is important to ensure ongoing appropriateness of training programs. This information will be used to strengthen GIM training programs in Canada

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences

    Get PDF
    PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    • ā€¦
    corecore