22 research outputs found

    Protein Signature of Lung Cancer Tissues

    Get PDF
    Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan) to compare protein expression signatures of non small-cell lung cancer (NSCLC) tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment

    Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize

    Get PDF
    Background: Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). Methods and Findings: In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related ciselements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    THE ROLE OF MMP-2, 9, AND 13, IN THE REGULATION OF SKELETAL MUSCLE HYPERTROPHY

    No full text
    R.E. Fitzpatrick1, G.E. McCall1, R.S. Mehan1, J. Hyatt2, J.A. Kim1 1University of Puget Sound, Tacoma, WA & 2Georgetown University, Washington, DC PURPOSE: Skeletal muscle is the most abundant tissue in vertebrates that functions primarily to generate locomotion, and exhibits a high degree of structural and functional plasticity that is largely dependent on the level of activity placed on it. Recent studies have shown that a family of enzymes known as matrix metalloproteinases (MMPs) play an important role in regulating this plasticity. Specifically, MMP-2, -9, and -13 degrade components of the extracellular matrix (ECM) surrounding muscle fibers during periods of growth and repair. However, the mechanisms by which these MMPs mediate this response and how each contributes to muscle repair and remodeling remains largely unknown. The purpose of this study was to examine the relationship between MMP-2, -9, and -13 in functionally overloaded (FO) mouse plantaris muscle, and determine what effect the absence of MMP-9 has on the expression of MMP-2 and MMP-13 in hypertrophying muscle. METHODS: FO of the plantaris muscle was performed on 10 wild type (WT) and 10 MMP-9 knockout (KO) mice. The plantaris muscle was then harvested at baseline (0-day), and 2- and 14-days after FO. RT-PCR experiments were performed to determine the semi-quantitative mRNA expression levels of MMP-2, -9, and -13. RESULTS: The mean relative plantaris muscle weight after 14-days FO was 1.0 ± 0.23 mg/g and 1.2 ± 0.25 mg/g in the WT and MMP-9 KO mice, respectively, and this was significantly larger compared to their respective 0-day baseline controls (p\u3c0.05). MMP-2 and MMP-13 mRNA expression in WT mice was 5.7 and 4.8% higher, respectively, after 14-days FO compared to baseline control. Similarly, MMP-2 and MMP-13 mRNA in MMP-9 KO mice after 14-days FO was 4.1 and 6.6% higher, respectively, compared to baseline control. CONCLUSIONS: MMP-2 and MMP-13 may play a more central role in hypertrophy than MMP-9. Additionally, there was no early expression of MMP-2 or MMP-13 in the KO mice, suggesting another molecular marker may be compensating for MMP-9 or that MMP-9 may not be essential in hypertrophy following FO. Supported by the McCormick Scholar Award and funds awarded to Dr. Kim from the University Enrichment Committee

    New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting

    Get PDF
    Abstract Background Aflatoxin contamination in peanut seeds is still a serious problem for the industry and human health. No stable aflatoxin resistant cultivars have yet been produced, and given the narrow genetic background of cultivated peanuts, wild species became an important source of genetic diversity. Wild peanut seeds, however, are not abundant, thus, an effective method of screening for aflatoxin accumulation using minimal seeds is highly desirable. In addition, keeping record of genetic fingerprinting of each accession would be very useful for breeding programs and for the identification of accessions within germplasm collections. Results In this study, we report a method of screening for aflatoxin accumulation that is applicable to the small-size seeds of wild peanuts, increases the reliability by testing seed viability, and records the genetic fingerprinting of the samples. Aflatoxin levels observed among 20 wild peanut species varied from zero to 19000 ng.g-1 and 155 ng.g-1 of aflatoxin B1 and B2, respectively. We report the screening of 373 molecular markers, including 288 novel SSRs, tested on 20 wild peanut species. Multivariate analysis by Neighbor-Joining, Principal Component Analysis and 3D-Principal Coordinate Analysis using 134 (36 %) transferable markers, in general grouped the samples according to their reported genomes. The best 88 markers, those with high fluorescence, good scorability and transferability, are reported with BLAST results. High quality markers (total 98) that discriminated genomes are reported. A high quality marker with UPIC score 16 (16 out of 20 species discriminated) had significant hits on BLAST2GO to a pentatricopeptide-repeat protein, another marker with score 5 had hits on UDP-D-apiose synthase, and a third one with score 12 had BLASTn hits on La-RP 1B protein. Together, these three markers discriminated all 20 species tested. Conclusions This study provides a reliable method to screen wild species of peanut for aflatoxin resistance using minimal seeds. In addition we report 288 new SSRs for peanut, and a cost-effective combination of markers sufficient to discriminate all 20 species tested. These tools can be used for the systematic search of aflatoxin resistant germplasm keeping record of the genetic fingerprinting of the accessions tested for breeding purpose
    corecore