2,729 research outputs found

    Dendritic ion channel trafficking and plasticity.

    Get PDF
    Dendritic ion channels are essential for the regulation of intrinsic excitability as well as modulating the shape and integration of synaptic signals. Changes in dendritic channel function have been associated with many forms of synaptic plasticity. Recent evidence suggests that dendritic ion channel modulation and trafficking could contribute to plasticity-induced alterations in neuronal function. In this review we discuss our current knowledge of dendritic ion channel modulation and trafficking and their relationship to cellular and synaptic plasticity. We also consider the implications for neuronal function. We argue that to gain an insight into neuronal information processing it is essential to understand the regulation of dendritic ion channel expression and properties

    Tethered cord: natural history, surgical outcome and risk for Chiari malformation 1 (CM1): A review of 110 detethering

    Get PDF
    The surgical results of this series of occult spina bifida seem better than the natural history registered in the long pre-operative period in terms of neurological deterioration. The major contribution to this result is attributed to neurophysiological monitoring that lowers the risks of permanent damage and increases the percentage of effective detethering. The present series of TCS, due to conus and filar lipoma, documents that CM1 is a really rare association occurring in less than 6% of the patients, despite the low position of conus. The detethering procedure did not influence the tonsillar position, thus excluding the correlation between the tethering and the tonsillar descent. The genetic alteration documented in a girl reinforces the hypothesis of a rare complex polymaformative picture deserving multiple procedures according to the prevailing clinical symptoms

    Topological Surface States Protected From Backscattering by Chiral Spin Texture

    Get PDF
    Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated by strong spin orbit coupling. These novel materials are distinguished from ordinary insulators by the presence of gapless metallic boundary states, akin to the chiral edge modes in quantum Hall systems, but with unconventional spin textures. Recently, experiments and theoretical efforts have provided strong evidence for both two- and three-dimensional topological insulators and their novel edge and surface states in semiconductor quantum well structures and several Bi-based compounds. A key characteristic of these spin-textured boundary states is their insensitivity to spin-independent scattering, which protects them from backscattering and localization. These chiral states are potentially useful for spin-based electronics, in which long spin coherence is critical, and also for quantum computing applications, where topological protection can enable fault-tolerant information processing. Here we use a scanning tunneling microscope (STM) to visualize the gapless surface states of the three-dimensional topological insulator BiSb and to examine their scattering behavior from disorder caused by random alloying in this compound. Combining STM and angle-resolved photoemission spectroscopy, we show that despite strong atomic scale disorder, backscattering between states of opposite momentum and opposite spin is absent. Our observation of spin-selective scattering demonstrates that the chiral nature of these states protects the spin of the carriers; they therefore have the potential to be used for coherent spin transport in spintronic devices.Comment: to be appear in Nature on August 9, 200

    Cross-protection between attenuated Plasmodium berghei and P. yoelii sporozoites

    Get PDF
    An attenuatedPlasmodium falciparum sporozoite (PfSPZ) vaccine is under development, in part, based on studies in mice withP. berghei. We usedP. berghei andP. yoelii to study vaccine-induced protection against challenge with a species of parasite different from the immunizing parasite in BALB/c mice. One-hundred percent of mice were protected against homologous challenge. Seventy-nine percent immunized with attenuatedP. berghei sporozoite (PbSPZ)(six experiments) were protected against challenge withP. yoelii sporozoite (PySPZ), and 63% immunized with attenuatedPySPZ(three experiments) were protected against challenge withPbSPZ. Antibodies in sera of immunized mice only recognized homologous sporozoites and could not have mediated protection against heterologous challenge. Immunization with attenuatedPySPZ orPbSPZ induced CD8+ T cell-dependent protection against heterologous challenge. Immunization with attenuatedPySPZ induced CD8+ T cell-dependent protection against homologous challenge. However, homologous protection induced by attenuatedPbSPZ was not dependent on CD8+ or CD4+ T cells, and depletion of both populations only reduced protection by 36%. Immunization of C57BL/10 mice withPbSPZ induced CD8+ T cell-dependent protection againstP. berghei, but no protection againstP. yoelii. The cross-protection data in BALB/c mice support testing a human vaccine based on attenuatedPfSPZ for its efficacy againstP. vivax

    Aneurysm of an autologous aorta to right coronary artery reverse saphenous vein graft presenting as a mediastinal mass: a case report

    Get PDF
    Aneurysmal dilation of saphenous vein grafts is a relatively rare complication of the now common surgical procedure of coronary artery bypass graft (CABG) surgery. The true prevalence of this condition is not clear, however, literature review by Jorgensen et. al. between 1975 and 2002 revealed only 76 published cases. [1] Recent review of literature, utilizing OVID (search terms: saphenous vein, aneurysm, graft, pseudoaneurysm, coronary bypass) suggests a significantly higher prevalence with 14 such cases published in a variety of multinational journals during the period of 2006 to April 2007. The causes of this dramatic increase is likely multifactorial, however, in the author's opinion, likely reflects the increased sophistication and utilization of cross sectional imaging modalities. Regardless of the true prevalence of the condition, there is little debate that the potential for serious morbidity and mortality in this patient population is significant, and that increased detection and discussion of viable therapeutic options is critical. [1] Therefore, we present a case report and discussion of a patient with symptomatic cardiac ischemia, found to have a large saphenous vein graft aneurysm (SVGA) on coronary CTA

    Glucose-6-phosphate dehydrogenase contributes to the regulation of glucose uptake in skeletal muscle

    Get PDF
    The development of skeletal muscle insulin resistance is an early physiological defect, yet the intracellular mechanisms accounting for this metabolic defect remained unresolved. Here, we have examined the role of glucose-6-phosphate dehydrogenase (G6PDH) activity in the pathogenesis of insulin resistance in skeletal muscle. Methods Multiple mouse disease states exhibiting insulin resistance and glucose intolerance, as well as obese humans defined as insulin-sensitive, insulin-resistant, or pre-diabetic, were examined. Results We identified increased glucose-6-phosphate dehydrogenase (G6PDH) activity as a common intracellular adaptation that occurs in parallel with the induction of insulin resistance in skeletal muscle and is present across animal and human disease states with an underlying pathology of insulin resistance and glucose intolerance. We observed an inverse association between G6PDH activity and nitric oxide synthase (NOS) activity and show that increasing NOS activity via the skeletal muscle specific neuronal (n)NOS&mu; partially suppresses G6PDH activity in skeletal muscle cells. Furthermore, attenuation of G6PDH activity in skeletal muscle cells via (a) increased nNOS&mu;/NOS activity, (b) pharmacological G6PDH inhibition, or (c) genetic G6PDH inhibition increases insulin-independent glucose uptake. Conclusions We have identified a novel, previously unrecognized role for G6PDH in the regulation of skeletal muscle glucose metabolism. <br /
    corecore