Topological insulators are a new class of insulators in which a bulk gap for
electronic excitations is generated by strong spin orbit coupling. These novel
materials are distinguished from ordinary insulators by the presence of gapless
metallic boundary states, akin to the chiral edge modes in quantum Hall
systems, but with unconventional spin textures. Recently, experiments and
theoretical efforts have provided strong evidence for both two- and
three-dimensional topological insulators and their novel edge and surface
states in semiconductor quantum well structures and several Bi-based compounds.
A key characteristic of these spin-textured boundary states is their
insensitivity to spin-independent scattering, which protects them from
backscattering and localization. These chiral states are potentially useful for
spin-based electronics, in which long spin coherence is critical, and also for
quantum computing applications, where topological protection can enable
fault-tolerant information processing. Here we use a scanning tunneling
microscope (STM) to visualize the gapless surface states of the
three-dimensional topological insulator BiSb and to examine their scattering
behavior from disorder caused by random alloying in this compound. Combining
STM and angle-resolved photoemission spectroscopy, we show that despite strong
atomic scale disorder, backscattering between states of opposite momentum and
opposite spin is absent. Our observation of spin-selective scattering
demonstrates that the chiral nature of these states protects the spin of the
carriers; they therefore have the potential to be used for coherent spin
transport in spintronic devices.Comment: to be appear in Nature on August 9, 200