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Abstract
Dendritic ion channels are essential for the regulation of intrinsic excitability as well as
modulating the shape and integration of synaptic signals. Changes in dendritic channel function
have been associated with many forms of synaptic plasticity. Recent evidence suggests that
dendritic ion channel modulation and trafficking may contribute to plasticity-induced alterations in
neuronal function. In this review, we discuss our current knowledge of dendritic ion channel
modulation and trafficking and their relationship to cellular and synaptic plasticity. We also
consider the implications for neuronal function. We argue that to gain an insight into neuronal
information processing, it is essential to understand the regulation of dendritic ion channel
expression and properties.

1. Dendrites and plasticity
Dendrites are extensive and elaborate processes emerging from the cell body of neurons.
They occupy a large surface area and receive most synaptic inputs1. Their predominant
function is in processing and transmitting synaptic signals to the cell body and axon initial
segment, where, if threshold is reached, action potentials are initiated. This is an active
process, as it is known that dendrites possess an abundance of ion channels that are involved
in receiving, transforming and relaying information to other parts of the neuron1. These
dendritic ion channels often differ in their biophysical properties and densities from those
present in other neuronal compartments. Moreover, ion channel expression and properties
may also differ within the dendritic arbor of neurons – e.g. hyperpolarization-activated
cation non-selective (HCN) channels are expressed highly in the apical, but not the basal,
dendritic tree of layer V cortical pyramidal neurons2-4. This adds an additional layer of
complexity to neuronal information processing.

It is now evident that dendritic ion channel expression and properties are modulated by
induction of Hebbian (including long-term potentiation (LTP) and long-term depression
(LTD)) as well as homeostatic (non-Hebbian) forms of plasticity (for reviews see Refs. 5-7).
Hebbian forms of plasticity are input specific changes in synaptic strength that largely
involve postsynaptic Ca2+ entry through voltage-sensitive N-methyl-D-aspartate receptors
(NMDAR; known as NMDAR-dependent plasticity). This Ca2+ influx also activates
intracellular signaling pathways that modify dendritic ion channel activity, local excitability
and, perhaps, cell-wide excitability, or “intrinsic plasticity”8, 9 (Figure 1). Often these
activity-dependent changes in dendritic ion channel function are stabilizing and limit the
extreme neuronal activity (spiking) that might otherwise result from sustained synaptic
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efficacy. This “homeostatic plasticity”10 provides negative feedback control of Hebbian
synaptic plasticity. Moreover, during synaptic plasticity altered expression and function of
dendritic ion channels, through their effects on membrane polarization, may also influence
the threshold for further induction of plasticity, or metaplasticity7-9, providing a local
mechanism of control over cell excitability.

Some of the activity-dependent changes in dendritic ion channel function described above
are likely to be a consequence of altered post-translational modifications as well dendritic
channel trafficking (Figure 1). Recent evidence suggests that selective targeting mechanisms
determine the distribution and properties of dendritic ion channels11. Specific molecules are
involved in the transport of ion channel subunits from the soma to dendrites. Additionally,
mRNAs encoding ion channels can be trafficked into dendrites and locally translated, a
process which may be activity-dependent12. Indeed, dendrites contain the necessary
machinery that enables local protein synthesis13. Hence, expression of ion channels can be
dynamically modified in dendrites in response to synaptic activity. This active modulation of
ion channel function may present a sophisticated mechanism by which neurons regulate
information flow and thereby, neuronal output.

Here we review recent reports on dendritic voltage-gated ion channel targeting mechanisms
and plasticity, omitting ligand gated ion channel trafficking and plasticity as there have been
many recent reviews on this (for example see14, 15). We begin by presenting an overview on
how ion channels affect dendritic intrinsic excitability and synaptic integration.

2. Role of dendritic ion channels in regulating intrinsic excitability, synaptic
integration and plasticity

Dendrites contain a plethora of ion channels including K+ channels. In many central
neurons, the densities of most voltage-gated potassium (Kv) channels appear to be uniform
or lower in distal dendrites compared with those present at the soma1. One exception
appears to be the Kv4 subunit. Immunohistochemical analysis first showed a predominantly
dendritic localization of Kv4 channels16 (Table 1). The Kv4 subunits form a fast activating
and inactivating current in heterologous systems, reminiscent of the A-type K+ current (IA)
in neurons17. Consistent with the immunohistochemical observations, electrophysiological
data together with pharmacology and calcium imaging have shown that A-type K+ channels
are more efficacious in the apical18-21, radial oblique22,23 and basal4,23,24 dendrites than the
soma of several types of central neurons. Here, A-type K+ channels play an important role in
determining the amplitude and width of back-propagating action potentials18,19,25. They
also limit the propagation of local dendritic spikes generated by spatially clustered and
temporal synaptic input23 and curtail dendritic Ca2+ signals generated by synaptic input or
by back-propagating action potentials22-24. Thus, these channels affect forms of plasticity
that depend on back-propagating action potentials or the propagation of local dendritic
spikes (i.e. spike timing-dependent plasticity)23,26. In addition, in hippocampal neurons,
altering Kv4.2 channel expression leads to an activity-dependent remodeling of synaptic
NMDAR subunit composition and consequentially the ability to induce synaptic plasticity27,
suggesting that regulation of these channels may act as a metaplasticity mechanism.

In contrast to Kv4 channels, neuronal Kv2.1 channels conduct delayed rectifier (IK) currents
that have a high threshold of voltage activation and slow kinetics28. Kv2.1 channels are
found in many mammalian central neurons including hippocampal and cortical pyramidal
cells (Table 1), where they appear to be localized to the somatodendritic compartment28 (but
see Ref. 29). Typically delayed rectifier currents have the primary role of repolarizing the
membrane after action potentials. However, the activation and inactivation properties of
Kv2.1 suggest these channels are too slow for the regulation of single action potentials and
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instead influence repetitive spiking30. In support of this, knockdown of Kv2.1 did not alter
the shape of single action potentials but did cause hyperexcitability after repetitive (1 Hz)
stimulation in hippocampal pyramidal cells31. Kv2.1 channels may therefore play an
important role in dendritic integration, by suppressing hyperexcitability as repetitive signals
approach the soma, and potentially contributing to homeostatic plasticity.

Dendrites and spines of several central neurons also contain calcium-activated potassium
(KCa) channels32-35. Intriguingly KCa2 (small conductance calcium-activated potassium or
SK) channels are located in close proximity to synaptic and extra-synaptic glutamate
receptors, suggesting a synaptic function (Table 1). Indeed, these channels reduce dendritic
integration by restricting compartmentalized Ca2+ spikes (plateau potentials) triggered by
strong synaptic input33. In the hippocampus32 and the amygdala34, Ca2+ influx through
NMDA receptors activates KCa2 channels, hyperpolarizing the membrane and promoting the
NMDA receptor Mg2+ block, limiting further activation. This KCa2-mediated negative
feedback on NMDA receptors therefore impacts the induction of Hebbian plasticity.
Consistent with this model, pharmacological downregulation of KCa2 enhances36, while the
genetic upregulation of KCa2 impairs37, hippocampal LTP induction and memory encoding.

Inwardly-rectifying K+ (Kir) channels are another group of K+ channels that are expressed
throughout the CNS including the apical dendrites of neocortical and hippocampal CA1
neurons38-41 (Table 1). Kir channels are characterized by their unidirectional inward
rectification that is gated by an intracellular cation block41. Therefore, at membrane
potentials more negative than rest, Kir channels pass an inward current, returning the
membrane to resting potential. However, at potentials more positive than rest, cations
prevent an outward K+ current from hyperpolarizing the cell membrane. These fundamental
rectification properties of Kir channels are essential in maintaining neuronal membrane
potential. Of the seven Kir subfamilies, Kir3.x channels are unique in their activation by G-
protein coupled receptors (GPCRs). Specifically, Gi- or Go-type GPCRs, such as GABAB
receptors, activate Kir3 channels41-43. Which particular GPCRs interact with Kir3.x is
potentially mediated by their spatial compartmentalization. For example, γ-amino butyric
acid B (GABAB) receptors have been observed in close proximity to synaptic Kir3.x
channels in spines, but less so in the dendritic shaft44,45. Consistent with their synaptic
localization, Kir3.2 channels mediate slow inhibitory post synaptic currents (IPSCs)46,
which are potentiated following low frequency (3 Hz) stimulation in hippocampal slices.
This phenomenon is mediated by GABAB receptor activation of Kir3.2 channels, and is
NMDAR- and calcium-calmodulin dependent protein kinase II (CaMKII)-dependent44.

Clearly, K+ channels play a significant role in shaping dendritic excitability. Dendrites,
however, contain a number of other ion channels too. Interestingly, recent evidence shows
that the dendrites and spines of hippocampal and cortical neurons contain an exceptionally
high density of the hyperpolarization-activated cation non-selective (HCN) channels47,48
(Table 1). Four subtypes of HCN (HCN1-4) genes exist49, with HCN1 and HCN2 channels
present predominantly in dendrites47,48. These channels have very unusual biophysical
properties, in that they are permeable to both Na+ and K+ and are activated at potentials
hyperpolarized to −50 mV. Hence, they are active at rest and are involved in maintaining the
neuronal resting membrane potential (RMP). Their effects on dendritic excitability, though,
are complex. Block or knockdown of HCN channels causes RMP hyperpolarization but
results in significantly greater numbers of dendritic action potentials, slower excitatory post-
synaptic potential (EPSP) decay and enhanced EPSP summation50-55. These effects are due
to increased membrane resistance51,54 as well as alterations in the biophysical properties of
other ion channels such as low voltage-activated Ca2+ channels56 and delayed rectifier K+

channels57. Hence, in spite of the RMP being hyperpolarized, a loss of Ih in distal
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hippocampal dendrites gives rise to enhanced LTP58 and elevated neural network
excitability51,59.

In addition to HCN and K+ channels, immunohistochemical studies have demonstrated the
presence of the Na+ channel subunits, NaV1.1, NaV1.2 and NaV1.6 in dendrites and spines
of hippocampal CA1 and cortical pyramidal neurons60. In agreement with this,
electrophysiological studies have revealed Na+ channels in the dendrites of these neurons60,
where they play a role in potentiating action potential back-propagation19,61 and generation
of dendritic spikes62 (Table 1). Action potential back-propagation and initiation of dendritic
spikes are critical for the induction of some forms of Hebbian plasticity9,62.

The initiation and expression of many forms of plasticity also often involves Ca2+ entry
through voltage-gated Ca2+ channels (VGCC). To date, ten VGCC primary subunits have
been cloned63. Immunohistochemical as well as electrophysiological studies have revealed
the presence of all subtypes of VGCC in dendrite shafts60. Further, multiple subtypes of
VGCC have been found in dendritic spines in numerous cell types64 (Table 1). VGCC
opening is enhanced by action potential backpropagation, synaptic potentials and action
potential backpropagation, sometimes leading to the initiation of Ca2+ spikes and plateau
potentials60,65,66. These properties allow VGCCs to regulate the induction of synaptic
plasticity60,65,66. Indeed, Ca2+ entry through dendritic VGCC is necessary for LTD in
entorhinal cortical cells67 and hippocampal CA1 neurons68, as well as for LTP at
hippocampal CA1- perforant path synapses66 and hippocampal CA1-schaffer collatoral
synapses69. Moreover, Ca2+ influx via CaV1.x (L-type) Ca2+ channels in dendritic spines
contributes to induction of synapse specific NMDA receptor- dependent LTP in
hippocampal neurons70. Hence, the presence of voltage-gated ion channels in dendrites
plays a vital role in determining their intrinsic excitability as well as shaping synaptic inputs
and integration and thereby induction and maintenance of plasticity.

3. Plasticity-induced post-translational modifications and membrane
trafficking of dendritic ion channels

Cellular neuroplasticity has been hypothesized to underlie experience-dependent behaviours
such as learning and memory and drug addiction (Figure 1). Uncovering the cellular and
molecular mechanisms of the acquisition, storage and recollection of memories is a major
topic of basic and translational neuroscience research, as alterations in these mechanisms
may contribute to multiple disease pathologies, including autism, epilepsy, Alzheimer's and
Parkinson's disease. For the most part, regulation of individual synaptic input strength
(synaptic plasticity) has received the most attention with a focus on the trafficking and
properties of the neurotransmitter receptors themselves (α–amino-3-hydroxyl-5-
methylisoxazole-4 propionate receptors (AMPARs) and NMDARs). However, a confluence
of recent evidence indicates that subsequent to receptor activation, synaptic responses are
regulated by dendritic voltage-gated channels and that these channels themselves are
targeted for modulation. To fully understand how these channels contribute to various forms
of plasticity is it critical to determine how their biophysical properties and subcellular
localization are modulated.

3.1 Post-translational modifications
Since many forms of cellular and synaptic plasticity result in altered activity of kinases and
phosphatases, it is perhaps not surprising that activity-dependent changes also affect
dendritic channel expression and properties (Figure 1). In distal CA1 dendrites, protein
kinase A (PKA), protein kinase C (PKC) and extracellular-signal regulated kinase/mitogen-
activated protein kinase (ERK/MAPK) all downregulate A-type K+ channel activity,
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resulting in enhanced action potential propagation71,72 (Table 1). In addition, LTP induction
in hippocampal slices shifts the voltage-dependence of steady-state IA inactivation leftward
73. These modulations both have the effect of increasing local dendritic excitability and
enhancing action potential back propagation, which would lead to a change in the ability to
induce subsequent potentiation (metaplasticity).

Moreover, Kv2.1 channels have a fascinating profile of phosphorylation-regulated
activation. Not only does dephosphorylation of the channel by PP2B (protein phosphatase
2B- also known as calcineurin; Table 1) cause a hyperpolarized shift in its voltage-
dependent activation74, but it does so in a graded manner. Using a proteomics approach, 16
phosphorylation sites were identified on the Kv2.1 channel, 7 of which are dephosphorylated
by PP2B. The more sites dephosphorylated, the greater the shift in activation, with complete
dephosphorylation yielding a large (~35 mV) hyperpolarized shift75. With their slow
kinetics, such changes in activation would likely produce more Kv2.1 channels being
activated during repetitive stimulation, and would subsequently suppress spiking during
instances of neuronal excitability, providing a mechanism of homeostatic plasticity29.

Despite its lack of voltage-dependence, KCa2.2 (SK2) channel activation is also regulated
through the phosphorylation state of its multiprotein complex. KCa2.2 channel activation
occurs when Ca2+ binds calmodulin (CaM), which is itself constitutively bound at the
channel C-terminus76. Also associated constitutively with KCa2.2 is casein kinase II (CK2)
and protein phosphatase 2A (PP2A), which regulate the phosphorylation of KCa2.2-bound
CaM77. While CaM phosphorylation by CK2 leads to faster channel deactivation and a
reduced Ca2+-sensitivity, dephosphorylation by PP2A increases Ca2+ sensitivity.
Interestingly, phosphorylation of CaM by CK2 is Ca2+- and state-dependent, only occurring
when the channels are closed. The net result is a system of bidirectional modification of
KCa2.2 channel activation, where during low activity (with infrequent Ca2+ signals)
activation is reduced by CK2 and during repetitive stimulation or synaptic activity (with
sustained Ca2+ signals) channel activation is enhanced by PP2A.

Similar to Kv and KCa channels, the resting state of HCN channels may also be regulated by
phosphorylation. Several modulators, including 3′,5′-cyclic adenosine monophosphate
(cAMP) and phosphoinositides, have been found, all of which shift the activation curves of
HCN channels49. Hence, variation in the activity of these molecules by GPCR activity or
synaptic strength would result in altered gating of these channels, leading to changes in
synaptic potential shapes and integration, thereby augmenting the intrinsic excitability of
neurons. Indeed, an elegant study by Wang et al. (2007) demonstrates that in spines of
prefrontal cortical neurons, activation of α2 adrenoreceptors leads to a reduction in cAMP
activity and HCN function (Table 1), thereby potentiating EPSP integration and elevating
neuronal firing, eventually causing an increase in working memory59.

Many forms of plasticity involve depolarization of dendrites leading to opening of Ca2+ and
Na+ channels. Na+ channels located in dendritic trunks are present in a phosphorylated state
in some neurons78. An altered balance of kinases and phosphatases caused by changes in
GPCR activity might lead to a change in the activation and inactivation curves of these
channels. This would affect the initiation and back propagation of dendritic spikes, and
could thereby alter the threshold for certain types of plasticity, such as spike-timing
dependent plasticity. GPCR activity may also regulate the resting state of Ca2+ channels.
Indeed, in hippocampal spines, activation of PKA by stimulation of β2-adrenoreceptors has
been demonstrated to facilitate CaV1.x (L-type) Ca2+ channel activity79, thereby priming the
induction of synaptic plasticity. Interestingly, these same pathways may also cause
depression of other Ca2+ channel subtypes and block LTP80. Hence, the phosphorylated
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states of voltage-dependent ion channels in dendrites are critical for the generation of
plasticity. This may also affect the maintenance of plasticity and thus, metaplasticity.

Throughout this section we have focused on regulation of ion channels by protein
phosphorylation. However, it is likely that future research will uncover other forms of post-
translational modifications (e.g. ubiquitination and palmitoylation) that contribute to
dendritic ion channel sorting and localization and are therefore also potential sources of
activity-dependent regulation of dendritic excitability.

3.2 Membrane trafficking – Potassium channels
In addition to post-translational modification of channel properties, active trafficking of
dendritic ion channels also influences cellular and synaptic plasticity (Figure 1). For
example, Kv4.2 channels are internalized from the dendritic membrane during synaptic
plasticity (Figure 2). In hippocampal slices, Kv4.2 channels are internalized after LTP
induction with a pairing protocol, and in cultured neurons with activation by AMPA,
potassium chloride (KCl,) or glycine81. In this study, internalization was measured by a
decrease in membrane-bound Kv4.2, a reduction in IA, and by real-time observation of green
fluorescent protein (GFP)-tagged Kv4.2 redistributing from the dendritic spine to the shaft
(Figure 2B). These effects were also NMDAR-dependent, supporting the model that Kv4.2
internalization occurs during Hebbian synaptic plasticity. The mechanism of Kv4.2
internalization likely involves clathrin-mediated endocytosis, since blocking dynamin
recruitment to clathrin-coated pits prevented GFP-Kv4.2 redistribution and IA reduction.

Multiple proteins mediate Kv4.2 targeting and membrane expression, and these molecules
may also play a role in its activity-dependent trafficking. The dendritic targeting of Kv4.2
subunits is dictated by a C-terminal dileucine motif 82, and Kv4.2 is transported by the motor
protein Kif17, a kinesin isoform that binds to the extreme C-terminal end of the channel83.
Kv4.2 cell surface expression is further regulated by a number of auxiliary subunits,
including Kv4 channel interacting proteins (KChIPs) and dipeptidyl peptidase-like type II
proteins, DPP6 and DPP1028, which bind to the N-terminus84 and S1/S2 domains85 of
Kv4.2, respectively. An intriguing avenue for future research will be to uncover how post-
translational modifications and membrane expression are related. For example, PKA
phosphorylation of Kv4.2 is required for activity-dependent internalization86. But does
phosphorylation trigger internalization or is it simply required for membrane localization of
the mobile pool of channels? Additionally, how do post-translational modifications interact
with auxiliary subunits to affect channel complex expression and properties? Auxiliary
subunits themselves could be targets for modulation. For example, it has been recently
shown that Kv4.2 primary subunit phosphorylation may be required for the auxiliary protein
KChIP4a to regulate channel properties87.

Similar to Kv4.2, KCa2.2 channels are also internalized during LTP (Figure 2A, Table 1)88.
In hippocampal slices, KCa2.2 channels are internalized after chemically-induced LTP or
after physiologically-relevant LTP induction by theta burst stimulation88. This process also
requires NMDAR activation and involves channel phosphorylation by PKA88. Clathrin-
mediated endocytoysis of KCa2.2 subunits has also been demonstrated in lateral amygdala
spines in an NMDAR- and PKA-dependent manner following LTP89. In this study, the
authors suggest there is constitutive dynamin-dependent endocytosis of KCa2.2 channels,
and PKA phosphorylation of the channel during stimulation sequesters it to the cytosolic
compartment. The resulting effect is a reduction in functional synaptic KCa2.2 and enhanced
LTP.

The expected consequence of reducing K+ channel density during synaptic activity is to
enhance dendritic excitability and reduce the probability of further LTP induction. But what
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is the fate of Kv4.2 and KCa2 channels after activity-dependent internalization? Are they
recycled back into the membrane or degraded? If the former, is reinsertion also subject to
activity-dependent regulation? The spatial restriction of signaling events that trigger
dendritic ion channel trafficking during plasticity is also unclear. That is, is internalization
compartmentalized to the spine or could extensive spread contribute to intrinsic plasticity?90

Recent reports show that some NMDAR-activated signalling molecules like the guanosine
triphosphatase Ras spread over 10 micrometers of dendrite and invade neighbouring
spines91 whereas others, such as CaMKII, remain restricted to the activated spine 70. Recent
advancements in fluorescent protein labeling and live cell imaging techniques may soon
provide answers to such questions.

Interestingly, the same neuronal activation that reduces surface expression of Kv4.2 and
KCa2.2 channels increases the surface expression of Kir channels (Figure 2A, Table 1). In
hippocampal neurons, activation with KCl, glutamate, NMDA, or glycine reduces the
surface expression of endogenous Kir3.1 and Kir3.2 channels92. This occurs through
NMDAR-dependent activation of protein phosphatase 1 (PP1), which dephosphorylates
Kir3.1-2 channels, causing their insertion into the membrane from recycling endosomes92.
This NMDAR-dependent insertion of Kir3.1-2 channels may also regulate depotentiation of
synapses, an input-specific and NMDAR-dependent form of synaptic plasticity important in
maintaining bidirectional modification of synapses. In a recent study, Chung et al93

demonstrate that depotentiation of hippocampal synapses requires the activation of
adenosine A1 receptors, PP1 and Kir3.1-2 channels- suggesting that the activity-dependent
insertion of Kir3.1-2 channels into the membrane may contribute to the mechanism of
depotentiation.

Together, these exciting findings raise the possibility that the input specificity of synaptic
plasticity may in part be mediated by alterations in local dendritic K+ channel expression.
Regulation of local protein synthesis and lateral translocation of Kv channels are also
mechanisms by which their differential expression occurs. In hippocampal neurons, local
Kv1.1 channel translation in dendrites is upregulated upon NMDA receptor inhibition,
suggesting that activity can regulate K+ channel expression (Table 1)94. Moreover, in
hippocampal pyramidal neurons, clustered somatodendritic Kv2.1 channels disperse laterally
along the membrane after neuronal stimulation and dephosphorylation by PP2B
(calcineurin) (Figure 2, Table 1)74,95,96. This dephosphorylation and translocation is
accompanied by a hyperpolarizing shift in the activation and inactivation of Kv2.196,97,
enhancing the influence of Kv2.1 during repetitive firing. Interestingly, this effect is
mediated by the activation of extrasynaptic NMDARs, and may be important for the
regulation of intrinsic excitability of neurons during excitotoxic events95-97.

3.3 HCN channel targeting and plasticity
Like K+ channels, Hebbian plasticity at selective synapses results in activity-dependent
alterations in HCN channels. Induction of NMDA-receptor dependent LTP via a theta burst
protocol enhances HCN expression in hippocampal CA1 neurons98,99. This effect is
dependent on Ca2+ entry via NMDAR activation of CaMKII (Figure 3, Table 1)99.
Conversely, metabotropic glutamate receptor-dependent LTD results in reduced HCN
expression due to Ca2+ release from internal stores and activation of PKC (Figure 3, Table
1)100. Hence, depending on the source and possibly concentration, Ca2+ can bi-directionally
regulate the membrane insertion of HCN channels.

One outstanding question is whether the plasticity-induced alterations in HCN function and
expression involve post-translational modifications, as has been shown for LTP-induced
changes in K+ channels81,88,89,92, modulation of auxiliary subunits or variations in local
protein synthesis. All three mechanisms may occur. HCN mRNA is abundant in
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dendrites101,102 and the possibility that synaptic activity may influence local protein
synthesis (as with KV1.194) or endocytic membrane re-cycling of HCN subunits cannot be
ruled out. Excitingly though, HCN channels are actively trafficked to dendrites by binding to
chaperone proteins known as TPR-containing Rab8b interacting protein (TRIP8b)103-106.
Moreover, TRIP8b appears to be essential for membrane expression of HCN channels in
hippocampal and cortical dendrites103,105,106. Multiple isoforms of TRIP8b have been
identified, most of which enhance expression of dendritic HCN subunits105,106. All isoforms
of TRIP8b also alter the gating of HCN channels104-106. TRIP8b, like HCN channels, has
phosphorylation consensus sites for a number of kinases106,107 including CaMKII and PKC,
raising the prospect that alterations in the activity of these kinases could dynamically
regulate expression of TRIP8b activity and thereby influence HCN channel expression and
characteristics at selective synapses and dendritic locations. In keeping with this, activity-
dependent loss of TRIP8b and thus HCN channel expression, has been demonstrated to
occur following excessive neuronal activity108.

Moreover, at some synapses HCN channels, and presumably TRIP8b subunits, may be
located in close proximity to GPCRs. Activation of these GPCRs may additionally modulate
HCN channel activity and expression and so influence the threshold of plasticity. This is
certainly the case in pre-frontal cortical neurons, whereby HCN1 channels are co-localized
with α2 adrenoreceptors59. In these neurons, activation of the α2 adrenoreceptors leads to a
decrease in spine cAMP and HCN1 channel activity, resulting in enhanced LTP and
working memory59 (Table 1). This is very intriguing as neither the gating properties nor the
expression profile of heterologously expressed HCN1 channels are significantly affected by
acute changes in cAMP109. Hence, it is possible that this may be due to modulation of
accessory subunits such as TRIP8b, again raising the question of whether plasticity-
dependent changes of HCN channel function are due to alterations in trafficking and
membrane expression of the subunits.

Additionally, there are multiple isoforms of TRIP8b, which are expressed in hippocampal
and cortical neurons105,106. Interestingly, one of these isoforms inhibits rather than enhances
HCN expression105,106, raising the possibility that plasticity induced changes in HCN
channel function may involve an altered balance in the activity of these TRIP8b isoforms.
Hence, plasticity may not induce changes in TRIP8b expression per se but may simply result
in increased activity of one isoform over the others, causing altered HCN subunit membrane
expression. These are all open questions that still need to be investigated, perhaps using new
tools such as isoform-specific antibodies or transgenic mice lacking selective isoforms.

4. Concluding remarks
In summary, we have discussed above how the activity and expression of dendritic ion
channels can be dynamically regulated by alterations in intrinsic neuronal firing and changes
in synaptic activity. Whilst enormous strides have been made in understanding how several
subtypes of voltage-gated ion channels are selectively targeted to dendrites and how
plasticity affects the dendritic trafficking of these channels, much less is known about
others. For example, dendritic Na+ and Ca2+ channel function is altered during synaptic
plasticity (Table 1)80,110 but whether these changes in function are due to variations in
expression and trafficking of the subunits remains to be explored. Future studies are also
required to determine how multiple trafficking events synchronize during plasticity. For
instance dendritic ion channels such as Kv4.2 and KCa2.2 channels are internalized while
AMPA type glutamate receptors are inserted into the membrane during LTP creating a
potential traffic jam. Are these events coordinated sequentially or are they independently
regulated? Related to this, do the same trafficking events that lead to plasticity-induced
changes in one dendritic ion channel trigger alterations in other ion channel properties to
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maintain homeostasis? Is mRNA translation co-regulated for different types of dendritic ion
channels? Clearly, much remains unknown, and the answers will be especially rewarding,
increasing our understanding of dendritic integration, basic biological signalling
mechanisms, and cellular and synaptic plasticity.
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Figure 1. Diagram depicting the reciprocal relationship between ion channel modulation/
trafficking and plasticity
Schematic illustrating the possible mechanisms underlying plasticity induced changes in ion
channel expression and properties. Note that dendritic trafficking mechanisms include
processes such as local translation as well as endocytosis.
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Figure 2. Activity dependent trafficking of K+ channels
A) A) Illustration depicting the translocation of several K+ channels in response to common
forms of neuronal plasticity. Extrasynaptic KV4.2 channels and KCa2.2 channels located
near the post-synaptic density (PSD) are internalized during LTP, requiring Ca2+ influx and
PKA activation (“1”); Kir3.2 channels are inserted into the synapse during depotentiation via
Ca2+ influx and protein phosphatase-1 (PP1) activation (“2”); and KV2.1 channels de-cluster
upon glutamate stimulation, a process dependent on Ca2+ influx and protein phosphatase-2B
(PP2B) activation (“3”). Glial glutamate transporters (GLT) also influence Kv2.1
dephosphorylation through their regulation of extrasynaptic NMDAR-Kv2.1 channel
coupling [96]. B) Activity-dependent internalization of the voltage-gated channel KV4.2
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requires NMDAR activation. Fluorescence changes are plotted from time-lapse images of
spines of hippocampal neurons coexpressing EGFP-tagged KV4.2 and the soluble red-
fluorescent protein (tdTomato). AMPA stimulation resulted in a specific, progressive
decrease of KV4.2 fluorescent intensity in spines, with no significant change in tdTomato
fluorescence (inset). KV4.2 fluorescent intensity was not significantly changed with APV
coapplication to block NMDARs. (Adapted with permission from Ref. [81]).
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Figure 3. Plasticity induced bi-directional regulation of HCN channels
(A) Model depicting the pathways involved in upregulation of HCN channels following
induction of theta-burst LTP in hippocampal neurons. (B) The converse occurs with
induction of LTD and is dependent on mGluR activation and thus different intracellular
signaling cascades.
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