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Glucose-6-phosphate dehydrogenase
contributes to the regulation of glucose uptake
in skeletal muscle
Robert S. Lee-Young 1,*, Nolan J. Hoffman 4,9, Kate T. Murphy 5, Darren C. Henstridge 1,
Dorit Samocha-Bonet 4, Andrew L. Siebel 3,10, Peter Iliades 1, Borivoj Zivanovic 1, Yet H. Hong 6,
Timothy D. Colgan 2, Michael J. Kraakman 1, Clinton R. Bruce 7, Paul Gregorevic 2, Glenn K. McConell 6,
Gordon S. Lynch 5, Grant R. Drummond 8, Bronwyn A. Kingwell 3, Jerry R. Greenfield 4, Mark A. Febbraio 1,4,**
ABSTRACT

Objective: The development of skeletal muscle insulin resistance is an early physiological defect, yet the intracellular mechanisms accounting
for this metabolic defect remained unresolved. Here, we have examined the role of glucose-6-phosphate dehydrogenase (G6PDH) activity in the
pathogenesis of insulin resistance in skeletal muscle.
Methods: Multiple mouse disease states exhibiting insulin resistance and glucose intolerance, as well as obese humans defined as insulin-
sensitive, insulin-resistant, or pre-diabetic, were examined.
Results: We identified increased glucose-6-phosphate dehydrogenase (G6PDH) activity as a common intracellular adaptation that occurs in
parallel with the induction of insulin resistance in skeletal muscle and is present across animal and human disease states with an underlying
pathology of insulin resistance and glucose intolerance. We observed an inverse association between G6PDH activity and nitric oxide synthase
(NOS) activity and show that increasing NOS activity via the skeletal muscle specific neuronal (n)NOSm partially suppresses G6PDH activity in
skeletal muscle cells. Furthermore, attenuation of G6PDH activity in skeletal muscle cells via (a) increased nNOSm/NOS activity, (b) pharma-
cological G6PDH inhibition, or (c) genetic G6PDH inhibition increases insulin-independent glucose uptake.
Conclusions: We have identified a novel, previously unrecognized role for G6PDH in the regulation of skeletal muscle glucose metabolism.

� 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Skeletal muscle is one of the largest organs in the human body and,
quantitatively, the most important tissue involved in maintaining
glucose homeostasis under insulin-stimulated conditions [1]. Recently,
we demonstrated that skeletal muscle insulin resistance is an early
metabolic defect that precedes hyperglycemia and marked weight gain
in response to high-fat feeding in mice [2]. While insulin resistance
was associated with elevated lipid species we and others have shown
a disconnect between these parameters [3,4]. Furthermore, while
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inflammatory markers have been linked to skeletal muscle insulin
resistance [5], gross changes in skeletal muscle inflammation appear
to occur well after the induction of insulin resistance [2]. Likewise, in
our hands, adipose tissue macrophage accumulation does not affect
whole-body insulin action [6]. Thus, other cellular perturbations likely
contribute to skeletal muscle insulin resistance.
Another cause of skeletal muscle insulin resistance could be an altered
cellular redox state. In cells, the pyridine nucleotide NADPH is required
for a number of processes, including maintenance of the cellular redox
balance and antioxidant defense [7]. NADPH is required for the
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conversion of oxidized to reduced glutathione (GSSG and GSH,
respectively), the primary redox buffer of the cell, which has been
shown to be dysregulated in insulin resistant skeletal muscle of ro-
dents and humans [8]. Thus, ensuring adequate cellular NADPH levels
is a key requirement for cellular homeostasis. Nevertheless, insulin
resistance could also be a by-product of maintaining cellular NADPH
levels. Indeed, NAPDH is also the major substrate for NADPH oxidase
(Nox), a membrane bound enzyme complex, which generates super-
oxide ðO2

��Þ. Excess O2
�� production has been linked to insulin

resistance in skeletal muscle via peroxynitrite ðONOO��Þ formation [9],
and in skeletal muscle the time course of increased Nox expression
closely parallels the induction of insulin resistance in response to high-
fat feeding [10,11].
In skeletal muscle cells, maintenance of NADPH relies heavily on
glucose-6-phosphate dehydrogenase (G6PDH) [12], an enzyme most
commonly associated with the pentose phosphate pathway [13].
G6PDH is activated in response to extracellular oxidants that cause a
decrease in NADPH levels [14]. Under in vitro conditions, it can be
regulated by NADPH:NADPþ levels [15]. In diet- and genetic-induced
animal models of insulin resistance, G6PDH activity is elevated in
adipose tissue [16]. In humans, adipose tissue G6PDH mRNA levels are
positively associated with BMI [16], while adenoviral overexpression of
G6PDH causes insulin resistance in 3T3-L1 adipocyte cells [16].
Whether G6PDH is mechanistically linked to insulin action in skeletal
muscle is unclear.
A potential mechanism linking an altered cellular redox state to insulin
resistance is nitric oxide synthase (NOS). In skeletal muscle, the
generation of nitric oxide (NO) is regulated by the skeletal muscle
specific neuronal NOS isozyme (nNOSm), which is impaired in insulin
resistant states of rodents and humans [17e19]. Similarly, nNOSm
protein expression is almost absent in animal models of muscular
dystrophy, and, through the use of this model, it was shown that NO
was required to repress G6PDH expression and activity [20]. Thus, it is
possible that reduced nNOSm expression in skeletal muscle of insulin
resistant states leads to elevated G6PDH. Alternatively, an increase in
O2

�� production e arising from increased Nox e could utilize NO to
form ONOO

��, which would also act to reduce available NO and lead to
increased G6PDH. Collectively, these findings suggest that an altered
redox state and/or changes in NO availability (via altered expression of
nNOSm) could be contributing to the onset of skeletal muscle insulin
resistance. Thus, we examined whether changes in intramuscular
redox state contribute to the induction of insulin resistance in skeletal
muscle.

2. MATERIAL AND METHODS

2.1. Animals
C57Bl/6 mice used for the chow-fed and HFD studies have been
previously described [2]. C57Bl/10 and mdx mice as well as ob/þ and
ob/ob littermates were bred in-house (AMREP Animal Services, Mel-
bourne, VIC, Australia). For PBS and C-26 experiments, 21 wk old
CD2F1 mice were used as previously described [21]. nnosþ/þ and
nnosþ/� littermate mice were generated by breeding C57Bl/6 nNOSþ/

�mice originally obtained from Jackson Laboratories (Bar Harbor, ME).
All mice were maintained at 22 � 1 �C on a 12:12 h lightedark cycle
with free access to food and water. All procedures undertaken were
approved by the AMREP Animal Ethics Committee or the Animal Ethics
Committee of The University of Melbourne, and conducted in accor-
dance with the Australian code of practice for the care and use of
animals for scientific purposes as stipulated by the National Health and
Medical Research Council of Australia.
1084 MOLECULAR METABOLISM 5 (2016) 1083e1091 � 2016 The Authors. Published by Elsevier GmbH.
2.2. Human experiments
Muscle biopsieswere collected after an overnight fast from obese insulin
sensitive (IS), obese insulin resistant (IT), and pre-diabetic individuals. All
protocols were approved by either the Alfred Hospital Human Research
Ethics Committee (Melbourne, VIC, Australia) or St. Vincent’s Hospital
Human Research Ethics Committee (Sydney, NSW, Australia) and con-
ducted in accordance with the Declaration of Helsinki of the World
Medical Association. All volunteers provided written informed consent.

2.3. Adenovirus production
Human nNOSm cDNA was synthesized by GenScript (Piscataway, NJ,
USA). Recombinant adenovirus was produced by transfecting HEK293T
cells grown to 80e90% confluency. The adenovirus was purified using
Mustang QTM ion exchange discs (Pall Corporation, NY, USA) ac-
cording to manufacturer’s instructions. Eluted virus was then
concentrated and stored at �80 �C.

2.4. Cell culture experiments
Cell culture experiments were performed on L6 myotubes free of
mycoplasma contamination (CRL-1458, ATCC�, USA). For AdV ex-
periments, myotubes were infected with GFP or hu-nNOSm AdV for
72 h. Glucose transport experiments were performed between pas-
sages 2e10 as described [22] using 2-[3H]DG (Perkin Elmer). To
determine the effect of G6PDH inhibition on GLUT4 translocation,
GLUT4 translocation assays were performed as described on L6
myotubes infected with a retrovirus containing an exofacial HA epitope-
tagged construct of human GLUT4 [23]. Stable L6 cells expressing full
or partial knockdown of g6pdh were generated using a G6PDH shRNA
lentivirus in parallel with a scrambled shRNA lentivirus according to the
manufacturer’s instructions (Santa Cruz Biotechnology Inc.). Where
indicated, 6-AN was reconstituted in DMSO (Sigma), and DMSO alone
was used as the corresponding control.

2.5. Enzymatic assays
G6PDH activity was measured as the difference between 6-
phosphogluconate dehydrogenase (6-PG) activity and total dehydro-
genase activity (G6PDH þ 6-PG). Samples (w10e20 mg) were
incubated in assay buffer (0.1 M TriseHCl, 500 mM EDTA, 500 mM
NADP) with 200 mM 6-phosphogluconate (6-PG activity) or 200 mM
G6P þ 200 mM 6-phosphogluconate (total activity), and the rate of
NADPH production at 340 nm was determined over 20 min (FLUOstar
Omega, Life Technologies).
Pyridine nucleotide levels were determined on acid or alkali extracted
samples as described [24]. Briefly,w10e20 mg of protein was added
to alkali buffer (0.05 M NaOH, 1 mM EDTA) and then divided into two
aliquots. In one of the aliquots, an equal volume of 0.1 M HCl was
added to generate an acid extract, and both extracts were then heated
at 60 �C for 30 min. The alkali extract was neutralized with 100 mM
TriseHCl (pH 8.1) and 0.05 M HCl. The acid extract was neutralized
with 0.4 M Tris. NADPþ and NADPH were measured essentially as
described [25] with the exception being that glutamate dehydrogenase
and G6PDH, respectively, were used as substrates. The rate of change
was measured over 30 min.
NOS activity was determined as described [26] as was GPx activity [27].
GSH(t) and GSSG levels were determined using enzymatic recycling
[28]. NADK activity was determined as described and calculated as the
difference between samples incubated with and without NADþ and ATP.

2.6. RNA isolation and quantitative real-time RT-PCR
Total RNA was isolated from skeletal muscle tissue using Trizol
(Invitrogen, Carlsbad, CA). Samples were reverse transcribed using
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Taqman reverse transcription reagents (Applied Biosystems, Foster
City, CA, USA). Gene expression analysis was performed by RT-PCR
using TaqMan gene expression assays (Applied Biosystems),
including 18S probe and primers for housekeeping measurements.

2.7. Statistics
Data are expressed as mean � standard deviation of the mean (SD).
Data were analyzed by t-test, one-way analysis of variance (ANOVA),
two-way ANOVA, two-way repeated measures ANOVA, or linear
regression where appropriate using SigmaPlot (version 10.0, Systat
Software Inc.). Where significance was p < 0.05, Fisher’s least sig-
nificance difference test was used to determine differences between
groups.

3. RESULTS

3.1. Altered redox state and induction of insulin resistance in
skeletal muscle are temporally related
Previously, we demonstrated the induction of skeletal muscle insulin
resistance following 3 wk of a high-fat diet (HFD) in mice [2]. After 3 wk
of a HFD in mice, we observed a trend (p ¼ 0.09) for reduced NADPH
levels and increased NADPþ under 5 h fasted conditions (Figure 1A),
leading to a reduction in the NADPH:NADPþ ratio within gastrocnemius
muscle (Figure 1B). Increased NADPþ levels were not due to elevated
NADþ kinase activity (Figure S1A). Likewise, total GSH levels were
unchanged (Figure S1B), while GSSG levels were reduced by w20%
(Figure S1C). There was no difference in the GSH:GSSG ratio
(Figure S1D). The activity of glutathione peroxidase, responsible for
reducing H2O2 to H2O, was also unaltered (Figure S1E).
In contrast, mRNA levels of Nox2 and Nox4, as well as the regulatory
p47phox subunit were increased by 30e50% after 3 wk of the HFD
(Figure 1C), whereas tyrosine nitration e an indicator of ONOO

��

formation e was unaltered (Figure S1F). The activity of G6PDH was
also elevated in 3 wk HFD mice (Figure 1D). This phenomenon was not
isolated to specific muscle groups, as we observed a similar finding in
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Figure 1: Effect of a high-fat diet (HFD) on skeletal muscle redox state in vivo. (A) N
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superficial vastus lateralis of mice fed a HFD for 3 wk (Figure S2A).
However, elevated G6PDH activity was not due to differences in g6pdh
gene expression (Figure S2B). In gastrocnemius muscle, we saw a
progressive increase in basal G6PDH activity from 3 to 16 wk of a HFD
(Figure 1D) and observed a correlation between skeletal muscle
G6PDH activity and fat mass in mice (Figure S2C). Furthermore, we
saw a trend (p ¼ 0.08) for an inverse relationship between skeletal
muscle G6PDH activity and basal rates of whole-body glucose disposal
(Rd) across the 16 wk HFD period (Figure 1E), and an association
between skeletal muscle G6PDH activity and basal rates of hepatic
glucose production (Figure S2D).
It has previously been shown that both G6PDH expression and activity
is elevated in adipose tissue of dietary and genetically obese animal
models [16]. Given that the 3 wk HFD mice were glucose intolerant
(Figure 2A), we next assessed G6PDH activity and found it to be
elevated byw45% under fasted conditions in skeletal muscle of ob/ob
mice, which are also glucose intolerant (Figure 2B), when compared
with ob/þ littermates (Figure 2C). Likewise, G6PDH activity was
elevated in mdx mice (Figure S3A), which share the same X-linked
pattern of inheritance to human Duchenne muscular dystrophy and are
glucose intolerant [29], under fasted conditions, as well as the pre-
clinical colon-26 (C-26) cancer cachexia mouse model, which also
exhibits glucose intolerance (Figure S3B and C).

3.2. Skeletal muscle G6PDH activity is linked to NO bioavailability
There is evidence to suggest that NO production, and thus nNOSm,
plays a key role in the regulation of G6PDH in skeletal muscle [20]. To
determine whether a relationship exists between nNOSm expression/
NOS activity and G6PDH, we examined nnosþ/� mice which have a
w50% reduction in skeletal muscle NOS activity compared with
littermate (nnosþ/þ) mice (Figure 3A). As shown in Figure 3B, under
fasted conditions, skeletal muscle G6PDH activity was elevated by
w45% in nnosþ/� mice. We next assessed NOS activity in our animal
models with elevated G6PDH activity. Despite unaltered nNOSm protein
expression in response to a 3 wk HFD (0.33 � 0.20 vs. 0.25 � 0.04
ow HFD
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arbitrary units for Chow; p¼ 0.4 for n¼ 5 per group), NOS activity was
reduced in skeletal muscle (Figure 3C). There was also a trend
(p ¼ 0.05) for reduced NOS activity in skeletal muscle of ob/ob mice
(Figure 3D), while NOS activity was almost absent in skeletal muscle of
mdx mice (Figure S3D). In contrast, no differences in NOS activity were
observed in skeletal muscle of PBS and C-26 injected mice
(Figure S3E). Linear regression analysis revealed that G6PDH activity
was inversely correlated to NOS activity in skeletal muscle in vivo
across all animal models, including the C-26 cancer cachexia model
(Figure S3F).

3.3. Skeletal muscle G6PDH activity is regulated by NO
bioavailability
In non-muscle tissue, hyperglycemia and palmitate have been shown
to decrease G6PDH activity, whereas insulin has been shown to in-
crease it [30e32]. We have previously shown that both intramuscular
lipids and plasma insulin levels are elevated in mice after 3 wk of a
HFD [2]. However, incubation of L6 myotubes with 100 nM insulin for
24 h, 25 mM glucose for 24 h, or 750 mM palmitate for 16 h did not
alter G6PDH activity (data not shown). Thus, we focused on the role of
nNOSm in the regulation of G6PDH activity.
To confirm a direct relationship between G6PDH and nNOSm
bioavailability in skeletal muscle, we utilized L6 myotubes, which have
undetectable levels of endogenous NOS expression (see nNOSm
expression and NOS activity in GFP treated cells; Figure S4A and B,
respectively). We infected L6 myotubes (see Figure S4C for repre-
sentative GFP adenovirus infection) with two different doses of a hu-
man nNOSm (hu-nNOSm) adenovirus. Infection with six infectious units
(6IU) resulted in a small increase in nNOSm protein expression but no
change in NOS activity. Infection with 14IU increased nNOSm protein
1086 MOLECULAR METABOLISM 5 (2016) 1083e1091 � 2016 The Authors. Published by Elsevier GmbH.
expression and NOS activity (Figure S4A and B, respectively).
Compared with GFP, hu-nNOSm at 6IU did not alter G6PDH activity
(Figure S4D). Overexpression of hu-nNOSm at 14IU suppressed G6PDH
activity byw35% (Figure 4A), indicating that nNOSm plays a direct role
in regulating G6PDH in skeletal muscle.

3.4. Partial suppression of G6PDH activity enhances insulin-
independent glucose uptake in skeletal muscle
When hu-nNOSm was expressed at 6IU in L6 myotubes, we saw no
alteration in 2-[3H]deoxyglucose (2-[3H]DG) uptake under basal (i.e.
insulin-dependent) or insulin-stimulated conditions when compared
with GFP treated cells (Figure S4E). However, hu-nNOSm at 14IU
increased basal rates of 2-[3H]DG uptake, resulting in enhanced rates
of 2-[3H]DG uptake under insulin-stimulated conditions (Figure 4B, left
panel). Indeed, no differences were observed in insulin-stimulated 2-
[3H]DG uptake per se in response to hu-nNOSm at 14IU (Figure 4B,
right panel), indicating that the elevated rates of insulin-stimulated 2-
[3H]DG uptake was due to enhanced basal 2-[3H]DG uptake. In ZDF
skeletal muscle in vivo and also skeletal muscle cell culture, over-
expression of nNOSa (lacking the 34 amino acid insert present in
nNOSm [33]) increases GLUT4 protein expression. However, in L6
myotubes hu-nNOSm at 6IU or 14IU did not alter total GLUT4 levels
(Figure S5A). Similarly, hu-nNOSm at 14IU did not alter GLUT4 in the
membrane fraction under basal or insulin-stimulated conditions
(Figure 4C).
To determine whether G6PDH per se was involved in the regulation of
glucose uptake in skeletal muscle, we induced partial suppression of
G6PDH in L6 myotubes via a 24 h incubation with 100 mM of the
selective G6PDH inhibitor, 6-aminonicotinamide (6-AN). 6-AN sup-
pressed G6PDH activity by w15% (Figure 4D), and, as we observed
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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stimulated [I] conditions following a 72 h adenoviral infection with GFP or 14IU hu-nNOSm (n ¼ 3). (D) G6PDH activity in L6 myotubes incubated for 24 h with DMSO or 100 mM 6-
AN (n ¼ 4, 3 replicates per experiment). (E) Basal [B] and insulin-stimulated [I] rates of 2-[3H]DG uptake and insulin-stimulated increase in 2-[3H]DG following a 24 h incubation
with DMSO or 100 mM 6-AN (n ¼ 5, 3e5 replicates per experiment). (F) Membrane bound GLUT-4 protein levels under basal [B] and insulin-stimulated [I] conditions following a
24 h incubation with DMSO or 100 mM 6-AN (n ¼ 6). Data are presented as a scatter plot (bar denotes mean � S.D) and were analyzed using a two-tailed unpaired t-test (A, D) or
two-way ANOVA (B, C, E, F). *p < 0.05 vs. GFP or 6-AN; yp < 0.05 vs. corresponding basal group.
with our hu-nNOSm experiments, 6-AN significantly increased basal
rates of 2-[3H]DG uptake, leading to higher rates of insulin-stimulated
glucose transport (Figure 4E, left panel). As with hu-nNOSm, no dif-
ferences were observed in insulin-stimulated 2-[3H]DG uptake per se
in response to 6-AN (Figure 4E, right panel). 6-AN did not alter total
GLUT4 levels (Figure S5B), but did increase the amount of HA-tagged
GLUT4 at the surface of L6 myotubes under basal and insulin-
stimulated conditions (Figure 4F).
We also generated stable L6 cell lines expressing (a) endogenous
G6PDH activity (termed WT), (b) a partial reduction in G6PDH activity
(m8), or (c) whole knockdown of G6PDH activity (m10). Despite
achieving full G6PDH knockdown in m10 cells (Figure S5C), these cells
had a reduction in basal 2-[3H]DG uptake and did not respond to insulin
(Figure S5D). No differences were observed between WT and m8
myotubes, which had aw45% reduction in G6PDH activity (Figure 5A).
However, basal rates of 2-[3H]DG uptake were elevated in m8 cells,
again leading to elevated rates of insulin-stimulated 2-[3H]DG uptake
(Figure 5B, left panel). Moreover, in m8 cells the insulin-stimulated
increase in 2-[3H]DG uptake was increased (Figure 5B, right panel).
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3.5. G6PDH activity is increased in skeletal muscle of pre-diabetic
individuals
We next determined whether skeletal muscle G6PDH activity was
altered in humans with metabolic disease. Specifically, we examined a
cohort of glucose tolerant obese individuals who had previously been
characterized as exhibiting muscle IS or muscle IR [34], and a cohort of
obese individuals who were glucose intolerant and classified as pre-
diabetic (fasting blood glucose levels ranging from 5.6 to 6.9 mmol/
L and/or blood glucose levels of 7.8e11.0 mmol/L 2 h following an oral
glucose tolerance test; HbA1c of 5.7e6.4%; [35]). Participants were
matched for age and BMI (Table 1).
While there was no difference in basal skeletal muscle G6PDH activity
in IS and IR groups, G6PDH activity was elevated in pre-diabetic in-
dividuals (Figure 6A). In humans, adipose tissue G6PDH is positively
associated with BMI [16], although we did not observe this association
with regard to skeletal muscle G6PDH activity (Figure S6A). When
examining our data from patients with pre-diabetes, while all in-
dividuals exhibited 2 h OGTT glucose levels of 7.8e10.9 mmol/L, 13
individuals had normal fasting glucose levels (range of 4.4e5.5 mmol/
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Table 1e Characteristics of obese insulin sensitive, obese insulin resistant,
and obese pre-diabetic subjects.

Parameter Insulin sensitive
(n ¼ 16)

Insulin resistant
(n ¼ 24)

Pre-diabetic
(n ¼ 24)

Gender (M:F) 6:10 14:10 19:5
Age (years) 51 � 14 48 � 10 55 � 8
BMI (kg/m2) 36 � 4 36 � 4 34 � 6
Fasting glucose
(mmol/L)

4.7 � 0.4 4.9 � 0.4 5.4 � 0.6**

Fasting insulin (pmol/
L)

85 � 37 171 � 104yy 107 � 62

2 h OGTT glucose
(mmol/L)

5.4 � 1.4 5.8 � 1.2 9.1 � 1.0**

HbA1c (%) 5.2 � 0.2 5.5 � 0.3y 5.7 � 0.4**
Plasma triacylglycerol
(mmol/L)

0.8 � 0.3 1.1 � 0.4 1.5 � 0.7**

Data are mean � S.D. and were analyzed using a one-way ANOVA. **p < 0.001 vs.
insulin sensitive and insulin resistant groups; yp < 0.05 vs. insulin sensitive group;
yyp < 0.01 vs. insulin sensitive and pre-diabetic group.

Original Article
L), whereas 11 individuals exhibited impaired fasting glucose levels
(5.7e6.4 mmol/L). Given the association between muscle G6PDH and
basal glucose homeostasis seen in mice, we stratified the pre-diabetic
individuals based on normal fasting glucose (NFG) or impaired fasting
glucose (IFG) levels (see Figure S6B). When stratified based on fasting
glucose levels, skeletal muscle G6PDH activity was similar between IS,
IR, and pre-diabetic NFG, but elevated in pre-diabetic IFG (Figure 6B).
In line with this finding, we also observed a positive association be-
tween basal skeletal muscle G6PDH activity and fasting plasma
glucose (Figure 6C), basal skeletal muscle G6PDH activity and fasting
plasma glucose:fasting plasma insulin levels (Figure 6D) as well as
basal skeletal muscle G6PDH activity and blood glucose levels 2 h
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following an oral glucose tolerance test (Figure 6E) across all
individuals.

3.6. Insulin-stimulated G6PDH activity is defective in insulin
resistant skeletal muscle
We have previously shown that insulin sensitivity is reduced in mice
following a 3 wk HFD [2]. Accordingly, we next examined whether
insulin-stimulated G6PDH activity was also altered. In chow-fed mice,
a 2 h hyperinsulinemic-euglycemic clamp (insulin clamp; see [2] for
relevant data) increased G6PDH activity 1.8 � 0.1-fold in gastrocne-
mius muscle, whereas the 3 wk HFD completely suppressed the
insulin-stimulated increase in G6PDH activity (0.9 � 0.1-fold change
vs. basal; Figure 7A). Moreover, the insulin-stimulated change in
gastrocnemius G6PDH activity of chow-fed and 3 wk HFD mice was
positively associated with the glucose infusion rate required to main-
tain euglycemia during the insulin clamp (GIR; Figure 7B), as well as
the insulin-stimulated glucose disposal rate (IS-GDR; Figure 7C). We
also found similar findings in superficial vastus lateralis muscle with
regards to insulin-stimulated G6PDH activity (Figure 7D) and the as-
sociation between G6PDH activity with GIR (Figure 7E) and IS-GDR
(Figure 7F).

4. DISCUSSION

Impaired glucose uptake and metabolism within skeletal muscle is a
defect seen not only in T2D but also across multiple non-diabetic
disease states [36]. We have identified elevated G6PDH activity as a
common intramuscular perturbation seen across multiple disease
states in animals and humans, all with an underlying pathology of
glucose intolerance. We also identified a direct relationship between
nNOSm/NOS activity and the regulation of G6PDH activity in skeletal
muscle cells. Moreover, we showed that partial suppression of G6PDH
activity via three independent mechanisms (increased nNOSm/NOS
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activity, pharmacological G6PDH inhibition, and genetic G6PDH inhi-
bition) all acted to increase insulin-independent glucose uptake in
skeletal muscle cells. Finally, we identified a defect in skeletal muscle
G6PDH activity under insulin-stimulated conditions. Thus, not only do
our findings highlight a perturbation in skeletal muscle G6PDH in
glucose intolerant states but they also highlight a previously uniden-
tified role for G6PDH in the regulation of skeletal muscle glucose
uptake.
Here, we identified a change in the cellular redox statee as evidenced
by an altered NADPH:NADPþ ratio e which paralleled the onset of
skeletal muscle insulin resistance in response to a HFD in mice. In
particular, Nox expression and G6PDH activity were elevated, whereas
other markers associated with impaired glucose uptake in response to
a HFD were unaltered. This differs from previous findings, which have
indicated a predominate role for GSH:GSSG and H2O2 production in
skeletal muscle insulin resistance in response to high-fat feeding [8].
The reason for these discrepancies is unclear, though they may be
related to the specific HFD, which contained significantly more fat in
previous studies (w60e100% calories from fat, versusw40% in the
present study). In mice, a prolonged HFD (�8 wk) increases Nox2,
Nox4, and p47phox expression in skeletal muscle [10,11], and here we
show a progressive increase in G6PDH activity from 3 to 16 wk of a
HFD. Thus, unlike other markers of insulin resistance/glucose intol-
erance (e.g. inflammation) which only seem to be evident after pro-
longed high-fat feeding [2], alterations in Nox expression and G6PDH
activity are readily detectable in skeletal muscle at a similar time point
to that of impaired glucose uptake.
Our findings identify a role for G6PDH in the regulation of insulin-
independent glucose uptake in vivo. In 3T3-L1 adipocytes, over-
expression of G6PDH suppresses insulin-stimulated glucose transport
by w40% [32] in agreement with our current findings in muscle cells
whereby partial suppression of G6PDH enhances the rate of glucose
MOLECULAR METABOLISM 5 (2016) 1083e1091 � 2016TheAuthors. Published by ElsevierGmbH. This is an o
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transport under insulin-stimulated conditions. However, based on our
results, it is clear that the elevated rates of insulin-stimulated glucose
transport were due to an additive effect arising from augmented rates
of insulin-independent glucose transport. It is possible that G6PDH
overexpression in 3T3-L1 adipocytes also altered insulin-independent
rates of glucose transport; however, this was not assessed [32]. We
observed elevated rates of insulin-independent glucose transport via
three independent mechanisms (hu-nNOSm, 6-AN, g6pdh shRNA), all
of which partially suppressed G6PDH activity. Given that elevated
G6PDH activity was an intracellular defect observed across multiple
animal and human glucose intolerant disease states, our findings
suggest that targeting G6PDH, or the G6PDH pathway within skeletal
muscle, may exert positive effects on glucose homeostasis. However,
our finding that cells expressing full knockdown of G6PDH were not
functionally viable demonstrates that there is a finite range to which
the G6PDH pathway can be modulated.
Our study is the first to specifically examine G6PDH activity in skeletal
muscle of humans. Aside from demonstrating that G6PDH is elevated
in pre-diabetic individuals, our findings suggest a possible role for
endogenous blood glucose levels in the regulation of skeletal muscle
G6PDH activity. In this context, it is somewhat surprising that neither
high glucose nor high insulin exposure altered G6PDH activity in our L6
skeletal muscle cells. However, this would suggest that (a) glucose or
insulin per se does not directly regulate G6PDH activity in skeletal
muscle, and (b) other factors that are likely absent in L6 muscle cells
are required. In this regard, hyperglycemia inhibits endothelial NOS
activity in aortic endothelial cells [37]. In a rabbit model of prolonged
critical illness, skeletal muscle NOS activity is impaired under normal
insulin/hyperglycemia and hyperinsulinemia/hyperglycemia conditions,
yet unaltered under hyperinsulinemia/normoglycemia conditions [38].
Given our finding that L6 muscle cells lack endogenous expression of
nNOSm, our data point towards hyperglycemia, through the
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manipulation of nNOSm, as a potential mechanism for the regulation of
basal G6PDH activity in skeletal muscle.
A somewhat unexpected finding in the present study was that phar-
macological inhibition of G6PDH, via a 24 h incubation with 6-AN, led
to increased levels of GLUT4 at the membrane of skeletal muscle cells.
The mechanism(s) accounting for this phenomenon is unclear.
Furthermore, we did not observe this phenomenon in response to hu-
nNOSm, despite the fact that hu-nNOSm and 6-AN produced similar
results with regards to suppression of G6PDH and increases in insulin-
independent glucose uptake. In individuals with T2D, infusion of a NO
donor increases basal rates of leg glucose uptake [39]. Studies in
isolated muscle strips have shown that this increased glucose uptake
occurs through an insulin-independent signaling mechanism(s) [40].
This is consistent with our findings in L6 myotubes showing that
changes in glucose uptake in response to hu-nNOSm occur in the
absence of any alteration in GLUT4 levels.
Our findings with regard to insulin-stimulated G6PDH activity are
intriguing. Under healthy conditions, we found that insulin increases
G6PDH activity in skeletal muscle, yet this increase is ablated after a
3 wk HFD. From a physiological standpoint, one would expect G6PDH
activity to increase in response to an acute elevation in insulin, as this
increases glucose flux into skeletal muscle and thus elevates G6P.
However, the reason that this insulin-stimulated increase in G6PDH
activity is not observed following a 3 wk HFD remains unclear. In non-
muscle tissue, G6PDH activity can be modulated via phosphorylation,
while PI-3 kinase and Akt have been shown to act as positive regu-
lators of G6PDH [13]. We have found no alteration in insulin-stimulated
Akt Serine473 phosphorylation in skeletal muscle following a 3 wk HFD
in mice [2], although it is possible that other regulators of G6PDH are
altered in response to the HFD. Thus, it will be important to determine
the role of G6PDH in the regulation of insulin-stimulated glucose up-
take in skeletal muscle, and the factor(s) that contribute to the increase
in G6PDH activity in response to insulin.

5. CONCLUSIONS

In conclusion, we have identified a novel, previously unidentified role
for G6PDH in skeletal muscle. Skeletal muscle G6PDH is defective
across multiple disease states, in animals and humans, all with an
underlying pathology of impaired glucose tolerance. Moreover, G6PDH
is directly regulated by nNOSm/NOS activity, and this interaction ap-
pears to play a role in the regulation of insulin-independent glucose
uptake. There remains no cure for skeletal muscle insulin resistance.
Indeed, while current glucose lowering therapies such as metformin
and sulfonylureas indirectly target skeletal muscle to improve glucose
uptake [41], their molecular basis is unknown, and efficacy declines
over time [42]. The lack of efficacy, combined with adverse compli-
cations of current glucose lowering therapies, highlights a clear,
clinical unmet need for the treatment of skeletal muscle insulin
resistance. Our data suggest that G6PDH may be a novel target by
which to increase insulin-independent glucose uptake in skeletal
muscle in multiple disease states where glucose intolerance and in-
sulin resistance is manifest.

ACKNOWLEDGEMENTS

We would like to thank Prof. Greg Cooney (University of Sydney, Sydney, NSW,

Australia) for constructive comments relating to this manuscript. This work was

supported by funding from the National Health and Medical Research Council

(NHMRC) of Australia (1004212), the Diabetes Australia Research Trust Program, and

the Victorian Government Operational Infrastructure Support Program. RSL, KTM, and
1090 MOLECULAR METABOLISM 5 (2016) 1083e1091 � 2016 The Authors. Published by Elsevier GmbH.
PG are supported by career development awards from the NHMRC of Australia. GRD,

BAK and MAF are supported by research fellowships from the NHMRC of Australia. All

authors declare that there are no conflicts of interest. RSL is the guarantor if this

work and, as such, had full access to all the data in the study and takes responsibility

for the integrity of the data and the accuracy of the data analysis.

CONFLICT OF INTEREST

None declared.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.

molmet.2016.09.002.

REFERENCES

[1] DeFronzo, R.A., Ferrannini, E., Sato, Y., Felig, P., Wahren, J., 1981. Synergistic

interaction between exercise and insulin on peripheral glucose uptake. The

Journal of Clinical Investigation 68:1468e1474.

[2] Turner, N., Kowalski, G.M., Leslie, S.J., Risis, S., Yang, C., Lee-Young, R.S.,

et al., 2013. Distinct patterns of tissue-specific lipid accumulation during the

induction of insulin resistance in mice by high-fat feeding. Diabetologia 56:

1638e1648.

[3] Bosma, M., Kersten, S., Hesselink, M.K., Schrauwen, P., 2012. Re-evaluating

lipotoxic triggers in skeletal muscle: relating intramyocellular lipid metabolism

to insulin sensitivity. Progress in Lipid Research 51:36e49.

[4] Selathurai, A., Kowalski, G.M., Burch, M.L., Sepulveda, P., Risis, S., Lee-

Young, R.S., et al., 2015. The CDP-ethanolamine pathway regulates skeletal

muscle diacylglycerol content and mitochondrial biogenesis without altering

insulin sensitivity. Cell Metabolism 21:718e730.

[5] Osborn, O., Olefsky, J.M., 2012. The cellular and signaling networks linking the

immune system and metabolism in disease. Nature Medicine 18:363e374.

[6] Kraakman, M.J., Kammoun, H.L., Allen, T.L., Deswaerte, V., Henstridge, D.C.,

Estevez, E., et al., 2015. Blocking IL-6 trans-signaling prevents high-fat diet-

induced adipose tissue macrophage recruitment but does not improve insulin

resistance. Cell Metabolism 21:403e416.

[7] Ying, W., 2008. NADþ/NADH and NADPþ/NADPH in cellular functions and cell

death: regulation and biological consequences. Antioxidants & Redox Signaling

10(2):179e206.

[8] Anderson, E.J., Lustig, M.E., Boyle, K.E., Woodlief, T.L., Kane, D.A., Lin, C.T.,

et al., 2009. Mitochondrial H2O2 emission and cellular redox state link excess

fat intake to insulin resistance in both rodents and humans. The Journal of

Clinical Investigation 119:573e581.

[9] Hoehn, K.L., Salmon, A.B., Hohnen-Behrens, C., Turner, N., Hoy, A.J.,

Maghzal, G.J., et al., 2009. Insulin resistance is a cellular antioxidant defense

mechanism. Proceedings of the National Academy of Sciences of the United

States of America 106:17787e17792.

[10] Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y.,

Nakajima, Y., et al., 2004. Increased oxidative stress in obesity and its impact

on metabolic syndrome. The Journal of Clinical Investigation 114:1752e1761.

[11] Souto Padron de Figueiredo, A., Salmon, A.B., Bruno, F., Jimenez, F.,

Martinez, H.G., Halade, G.V., et al., 2015. Nox2 mediates skeletal muscle

insulin resistance induced by a high-fat diet. The Journal of Biological

Chemistry 290:13427e13439.

[12] Mailloux, R.J., Harper, M.E., 2010. Glucose regulates enzymatic sources of

mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-

phosphate dehydrogenase. FASEB Journal 24:2495e2506.

[13] Stanton, R.C., 2012. Glucose-6-phosphate dehydrogenase, NADPH, and cell

survival. IUBMB Life 64:362e369.
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://dx.doi.org/10.1016/j.molmet.2016.09.002
http://dx.doi.org/10.1016/j.molmet.2016.09.002
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref1
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref1
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref1
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref1
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref2
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref2
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref2
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref2
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref2
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref3
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref3
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref3
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref3
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref4
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref4
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref4
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref4
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref4
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref5
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref5
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref5
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref6
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref6
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref6
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref6
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref6
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref7
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref7
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref7
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref7
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref7
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref7
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref8
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref8
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref8
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref8
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref8
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref9
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref9
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref9
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref9
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref9
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref10
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref10
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref10
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref10
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref11
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref11
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref11
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref11
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref11
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref12
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref12
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref12
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref12
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref13
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref13
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref13
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


[14] Kletzien, R.F., Harris, P.K., Foellmi, L.A., 1994. Glucose-6-phosphate dehy-

drogenase: a “housekeeping” enzyme subject to tissue-specific regulation by

hormones, nutrients, and oxidant stress. FASEB Journal 8:174e181.

[15] Holten, D., Procsal, D., Chang, H.L., 1976. Regulation of pentose phosphate

pathway dehydrogenases by NADPþ/NADPH ratios. Biochemical and Bio-

physical Research Communications 68:436e441.

[16] Park, J., Rho, H.K., Kim, K.H., Choe, S.S., Lee, Y.S., Kim, J.B., 2005. Over-

expression of glucose-6-phosphate dehydrogenase is associated with lipid

dysregulation and insulin resistance in obesity. Molecular and Cellular Biology

25:5146e5157.

[17] Bradley, S.J., Kingwell, B.A., Canny, B.J., McConell, G.K., 2007. Skeletal

muscle neuronal nitric oxide synthase micro protein is reduced in people with

impaired glucose homeostasis and is not normalized by exercise training.

Metabolism 56:1405e1411.

[18] Kashyap, S.R., Roman, L.J., Lamont, J., Masters, B.S., Bajaj, M.,

Suraamornkul, S., et al., 2005. Insulin resistance is associated with impaired

nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. The

Journal of Clinical Endocrinology and Metabolism 90:1100e1105.

[19] Young, M.E., Leighton, B., 1998. Evidence for altered sensitivity of the nitric

oxide/cGMP signalling cascade in insulin-resistant skeletal muscle. The

Biochemical Journal 329:73e79.

[20] Cacchiarelli, D., Martone, J., Girardi, E., Cesana, M., Incitti, T., Morlando, M.,

et al., 2010. MicroRNAs involved in molecular circuitries relevant for the

Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/

nNOS pathway. Cell Metabolism 12:341e351.

[21] Murphy, K.T., Struk, A., Malcontenti-Wilson, C., Christophi, C., Lynch, G.S.,

2013. Physiological characterization of a mouse model of cachexia in colo-

rectal liver metastases. American Journal of Physiology. Regulatory, Integrative

and Comparative Physiology 304:R854eR864.

[22] Hutchinson, D.S., Bengtsson, T., 2005. aA-adrenoceptors activate glucose

uptake in L6 muscle cells through a phospholipase C-, phosphatidylinositol-3

kinase-, and atypical protein kinase C-dependent pathway. Endocrinology 146:

901e912.

[23] Govers, R., Coster, A.C., James, D.E., 2004. Insulin increases cell surface

GLUT4 levels by dose dependently discharging GLUT4 into a cell surface

recycling pathway. Molecular and Cellular Biology 24:6456e6466.

[24] Lin, S.S., Manchester, J.K., Gordon, J.I., 2001. Enhanced gluconeogenesis and

increased energy storage as hallmarks of aging in Saccharomyces cerevisiae.

The Journal of Biological Chemistry 276:36000e36007.

[25] Jacobson, E.L., Jacobson, M.K., 1997. Tissue NAD as a biochemical measure

of niacin status in humans. Methods in Enzymology 280:221e230.

[26] Lee-Young, R.S., Ayala, J.E., Hunley, C.F., James, F.D., Bracy, D.P., Kang, L.,

et al., 2010. Endothelial nitric oxide synthase is central to skeletal muscle

metabolic regulation and enzymatic signaling during exercise in vivo. American

Journal of Physiology. Regulatory, Integrative and Comparative Physiology 298:

R1399eR1408.

[27] de Haan, J.B., Bladier, C., Griffiths, P., Kelner, M., O’Shea, R.D., Cheung, N.S.,

et al., 1998. Mice with a homozygous null mutation for the most abundant
MOLECULAR METABOLISM 5 (2016) 1083e1091 � 2016TheAuthors. Published by ElsevierGmbH. This is an o
www.molecularmetabolism.com
glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative

stress-inducing agents paraquat and hydrogen peroxide. The Journal of Bio-

logical Chemistry 273:22528e22536.

[28] Rahman, I., Kode, A., Biswas, S.K., 2006. Assay for quantitative determination

of glutathione and glutathione disulfide levels using enzymatic recycling

method. Nature Protocols 1:3159e3165.

[29] Stapleton, D.I., Lau, X., Flores, M., Trieu, J., Gehrig, S.M., Chee, A., et al.,

2014. Dysfunctional muscle and liver glycogen metabolism in mdx dystrophic

mice. PLoS One 9:e91514.

[30] Park, J., Choe, S.S., Choi, A.H., Kim, K.H., Yoon, M.J., Suganami, T., et al.,

2006. Increase in glucose-6-phosphate dehydrogenase in adipocytes stimu-

lates oxidative stress and inflammatory signals. Diabetes 55:2939e2949.

[31] Zhang, Z., Apse, K., Pang, J., Stanton, R.C., 2000. High glucose inhibits

glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. The

Journal of Biological Chemistry 275:40042e40047.

[32] Zhang, Z., Liew, C.W., Handy, D.E., Zhang, Y., Leopold, J.A., Hu, J., et al., 2010.

High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased

oxidative stress and beta-cell apoptosis. FASEB Journal 24:1497e1505.

[33] Silvagno, F., Xia, H., Bredt, D.S., 1996. Neuronal nitric-oxide synthase-mu, an

alternatively spliced isoform expressed in differentiated skeletal muscle. The

Journal of Biological Chemistry 271:11204e11208.

[34] Chen, D.L., Liess, C., Poljak, A., Xu, A., Zhang, J., Thoma, C., et al., 2015.

Phenotypic characterization of insulin-resistant and insulin-sensitive obesity.

The Journal of Clinical Endocrinology and Metabolism 100:4082e4091.

[35] Association AD, 2015. Classification and diagnosis of diabetes. Diabetes Care

38(Supplement 1):S8eS16.

[36] Abdul-Ghani, M.A., DeFronzo, R.A., 2010. Pathogenesis of insulin resistance in

skeletal muscle. Journal of Biomedicine & Biotechnology 476279.

[37] Du, X.L., Edelstein, D., Dimmeler, S., Ju, Q., Sui, C., Brownlee, M., 2001.

Hyperglycemia inhibits endothelial nitric oxide synthase activity by post-

translational modification at the Akt site. The Journal of Clinical Investigation

108:1341e1348.

[38] Ellger, B., Langouche, L., Richir, M., Debaveye, Y., Vanhorebeek, I.,

Teerlink, T., et al., 2008. Modulation of regional nitric oxide metabolism: blood

glucose control or insulin? Intensive Care Medicine 34:1525e1533.

[39] Wang, F., Zhao, Y., Niu, Y., Wang, C., Wang, M., Li, Y., et al., 2012. Activated

glucose-6-phosphate dehydrogenase is associated with insulin resistance by

upregulating pentose and pentosidine in diet-induced obesity of rats. Hormone

and Metabolic Research 44:938e942.

[40] Tiganis, T., 2011. Reactive oxygen species and insulin resistance: the good,

the bad and the ugly. Trends in Pharmacological Sciences 32:82e89.

[41] Musi, N., Hirshman, M.F., Nygren, J., Svanfeldt, M., Bavenholm, P.,

Rooyackers, O., et al., 2002. Metformin increases AMP-activated protein ki-

nase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:

2074e2081.

[42] DeFronzo, R.A., Eldor, R., Abdul-Ghani, M., 2013. Pathophysiologic approach

to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care

36(Suppl. 2):S127eS138.
pen access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1091

http://refhub.elsevier.com/S2212-8778(16)30133-8/sref14
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref14
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref14
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref14
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref15
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref15
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref15
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref15
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref15
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref16
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref16
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref16
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref16
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref16
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref17
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref17
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref17
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref17
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref17
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref18
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref18
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref18
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref18
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref18
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref19
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref19
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref19
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref19
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref20
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref20
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref20
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref20
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref20
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref21
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref21
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref21
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref21
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref21
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref22
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref22
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref22
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref22
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref22
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref23
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref23
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref23
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref23
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref24
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref24
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref24
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref24
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref25
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref25
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref25
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref26
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref26
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref26
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref26
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref26
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref26
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref27
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref27
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref27
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref27
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref27
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref27
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref28
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref28
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref28
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref28
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref29
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref29
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref29
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref30
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref30
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref30
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref30
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref31
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref31
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref31
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref31
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref32
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref32
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref32
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref32
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref33
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref33
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref33
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref33
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref34
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref34
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref34
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref34
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref35
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref35
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref35
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref36
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref36
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref37
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref37
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref37
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref37
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref37
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref38
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref38
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref38
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref38
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref39
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref39
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref39
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref39
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref39
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref40
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref40
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref40
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref41
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref41
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref41
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref41
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref41
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref42
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref42
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref42
http://refhub.elsevier.com/S2212-8778(16)30133-8/sref42
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com

	Glucose-6-phosphate dehydrogenase contributes to the regulation of glucose uptake in skeletal muscle
	1. Introduction
	2. Material and methods
	2.1. Animals
	2.2. Human experiments
	2.3. Adenovirus production
	2.4. Cell culture experiments
	2.5. Enzymatic assays
	2.6. RNA isolation and quantitative real-time RT-PCR
	2.7. Statistics

	3. Results
	3.1. Altered redox state and induction of insulin resistance in skeletal muscle are temporally related
	3.2. Skeletal muscle G6PDH activity is linked to NO bioavailability
	3.3. Skeletal muscle G6PDH activity is regulated by NO bioavailability
	3.4. Partial suppression of G6PDH activity enhances insulin-independent glucose uptake in skeletal muscle
	3.5. G6PDH activity is increased in skeletal muscle of pre-diabetic individuals
	3.6. Insulin-stimulated G6PDH activity is defective in insulin resistant skeletal muscle

	4. Discussion
	5. Conclusions
	Acknowledgements
	Conflict of interest
	Appendix A. Supplementary data
	References


