1,012 research outputs found
Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests
Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming
Modelling Transmission of Vector-Borne Pathogens Shows Complex Dynamics When Vector Feeding Sites Are Limited
The relationship between species richness and the prevalence of vector-borne disease has been widely studied with a range of outcomes. Increasing the number of host species for a pathogen may decrease infection prevalence (dilution effect), increase it (amplification), or have no effect. We derive a general model, and a specific implementation, which show that when the number of vector feeding sites on each host is limiting, the effects on pathogen dynamics of host population size are more complex than previously thought. The model examines vector-borne disease in the presence of different host species that are either competent or incompetent (i.e. that cannot transmit the pathogen to vectors) as reservoirs for the pathogen. With a single host species present, the basic reproduction ratio R0 is a non-monotonic function of the population size of host individuals (H), i.e. a value exists that maximises R0. Surprisingly, if a reduction in host population size may actually increase R0. Extending this model to a two-host species system, incompetent individuals from the second host species can alter the value of which may reverse the effect on pathogen prevalence of host population reduction. We argue that when vector-feeding sites on hosts are limiting, the net effect of increasing host diversity might not be correctly predicted using simple frequency-dependent epidemiological models
Chain-store pricing and the structure of retail markets
This paper examines competition between chain-stores and independent retailers in the UK retail opticians' market. We demonstrate that the pricing policy adopted by chain-stores can determine the impact their entry has on independent retailers. Crucially, in this market the chain-store retailers set an identical national price across all local markets. Our results suggest that this pricing strategy lessens the detrimental effect competition from chain-stores has on independent retailers
Low-risk persistent gestational trophoblastic disease treated with low-dose methotrexate: efficacy, acute and long-term effects
The aim of this study was to evaluate the efficacy and toxicity of low-dose methotrexate with folinic acid rescue in a large series of consecutively treated patients with low-risk persistent gestational trophoblastic disease. Between January 1987 and December 2000, 250 patients were treated with intramuscular methotrexate (50 mg on alternate days 1, 3, 5, 7) with folinic acid (7.5 mg orally on alternate days 2, 4, 6, 8) rescue. The overall complete response rate without recurrence was 72% for first-line treatment and 95% for those who required second-line chemotherapy. Eight women (3.2%) had recurrence following remission and two (0.8%) had new moles. Two women (0.8%) died of their disease giving an overall cure of 99%. Only 10 women (4%) experienced grade III/IV toxicity during the first course of treatment and 13 women (5.2%) subsequently. Toxicity included mucositis and stomatitis, pleuritic chest pain, thrombocytopenia, uterine bleeding, abdominal pain, liver function changes, rash and pericardial effusion. A total of 59 women (23.6%) required second-line chemotherapy; 48 women had methotrexate resistance, eight had methotrexate toxicity and an empirical decision to change therapy was made in three. In all, 11 women (4.4%) had a hysterectomy before, during or after treatment; 141 women (56.4%) became pregnant following treatment: in 128 (90.7%), the outcome was successful. Methotrexate with folinic acid rescue is an effective treatment for low-risk persistent trophoblastic disease. It has minimal severe toxicity, excellent cure rates and does not appear to affect fertility
Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes
Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought
Wolbachia and DNA barcoding insects: patterns, potential and problems
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region
Prediction of peptide and protein propensity for amyloid formation
Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation
Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence
Emerging and re-emerging infectious diseases have become a major global environmental problem with important public health, economic, and political consequences. The etiologic agents of most emerging infectious diseases are zoonotic, and anthropogenic environmental changes that affect wildlife communities are increasingly implicated in disease emergence and spread. Although increased disease incidence has been correlated with biodiversity loss for several zoonoses, experimental tests in these systems are lacking. We manipulated small-mammal biodiversity by removing non-reservoir species in replicated field plots in Panama, where zoonotic hantaviruses are endemic. Both infection prevalence of hantaviruses in wild reservoir (rodent) populations and reservoir population density increased where small-mammal species diversity was reduced. Regardless of other variables that affect the prevalence of directly transmitted infections in natural communities, high biodiversity is important in reducing transmission of zoonotic pathogens among wildlife hosts. Our results have wide applications in both conservation biology and infectious disease management
Shifting suitability for malaria vectors across Africa with warming climates
<p>Abstract</p> <p>Background</p> <p>Climates are changing rapidly, producing warm climate conditions globally not previously observed in modern history. Malaria is of great concern as a cause of human mortality and morbidity, particularly across Africa, thanks in large part to the presence there of a particularly competent suite of mosquito vector species.</p> <p>Methods</p> <p>I derive spatially explicit estimates of human populations living in regions newly suitable climatically for populations of two key <it>Anopheles gambiae </it>vector complex species in Africa over the coming 50 years, based on ecological niche model projections over two global climate models, two scenarios of climate change, and detailed spatial summaries of human population distributions.</p> <p>Results</p> <p>For both species, under all scenarios, given the changing spatial distribution of appropriate conditions and the current population distribution, the models predict a reduction of 11.3–30.2% in the percentage of the overall population living in areas climatically suitable for these vector species in coming decades, but reductions and increases are focused in different regions: malaria vector suitability is likely to decrease in West Africa, but increase in eastern and southern Africa.</p> <p>Conclusion</p> <p>Climate change effects on African malaria vectors shift their distributional potential from west to east and south, which has implications for overall numbers of people exposed to these vector species. Although the total is reduced, malaria is likely to pose novel public health problems in areas where it has not previously been common.</p
Can interventions that aim to decrease Lyme disease hazard at non-domestic sites be effective without negatively affecting ecosystem health? A systematic review protocol
Background
Lyme disease (LD) is the most commonly reported, broadly distributed vector-borne disease of the northern temperate zone. It is transmitted by ticks and, if untreated, can cause skin, cardiac, nervous system and musculoskeletal disease. The distribution and incidence of LD is increasing across much of North America and Western Europe. Interventions to decrease exposure to LD hazard by encouraging behavioural change have low acceptance in high risk groups, and a safe, effective human LD vaccine is not presently available. As a result, habitat level interventions to decrease LD hazard itself (i.e. levels of infected ticks) have been proposed. However, some interventions may potentially negatively affect ecosystem health, and consequentially be neither desirable, nor politically feasible. This systematic review will catalogue interventions that aim to reduce LD hazard at non-domestic sites, and examine the evidence supporting those which are unlikely to negatively affect ecosystem health.
Methods
The review will be carried out in two steps. First, a screening and cataloguing stage will be conducted to identify and characterise interventions to decrease LD hazard at non-domestic sites. Secondly, the subset of interventions identified during cataloguing as unlikely to negatively affect ecosystem health will be investigated. In the screening and cataloguing step literature will be collected through database searching using pre-chosen search strings, hand-searching key journals and reviewing the websites of public health bodies. Further references will be identified by contacting stakeholders and researchers. Article screening and assessment of the likely effects of interventions on ecosystem health will be carried out independently by two reviewers. A third reviewer will be consulted if disagreements arise. The cataloguing step results will be presented in tables. Study quality will then be assessed independently by two reviewers, using adapted versions of established tools developed in healthcare research. These results will be presented in a narrative synthesis alongside tables. Though a full meta-analysis is not expected to be possible, if sub-groups of studies are sufficiently similar to compare, a partial meta-analysis will be carried out
- …