283 research outputs found

    What is a hospital bed day worth? A contingent valuation study of hospital Chief Executive Officers

    Full text link
    BACKGROUND: Decreasing hospital length of stay, and so freeing up hospital beds, represents an important cost saving which is often used in economic evaluations. The savings need to be accurately quantified in order to make optimal health care resource allocation decisions. Traditionally the accounting cost of a bed is used. We argue instead that the economic cost of a bed day is the better value for making resource decisions, and we describe our valuation method and estimations for costing this important resource. METHODS: We performed a contingent valuation using 37 Australian Chief Executive Officers’ (CEOs) willingness to pay (WTP) to release bed days in their hospitals, both generally and using specific cases. We provide a succinct thematic analysis from qualitative interviews post survey completion, which provide insight into the decision making process. RESULTS: On average CEOs are willing to pay a marginal rate of 216forawardbeddayand216 for a ward bed day and 436 for an Intensive Care Unit (ICU) bed day, with estimates of uncertainty being greater for ICU beds. These estimates are significantly lower (four times for ward beds and seven times for ICU beds) than the traditional accounting costs often used. Key themes to emerge from the interviews include the importance of national funding and targets, and their associated incentive structures, as well as the aversion to discuss bed days as an economic resource. CONCLUSIONS: This study highlights the importance for valuing bed days as an economic resource to inform cost effectiveness models and thus improve hospital decision making and resource allocation. Significantly under or over valuing the resource is very likely to result in sub-optimal decision making. We discuss the importance of recognising the opportunity costs of this resource and highlight areas for future research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12913-017-2079-5) contains supplementary material, which is available to authorized users

    Changes in the functional diversity of modern bird species over the last million years

    Get PDF
    Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time

    A cluster randomized controlled trial of the effectiveness and cost-effectiveness of Intermediate Care Clinics for Diabetes (ICCD) : study protocol for a randomized controlled trial

    Get PDF
    Background World-wide healthcare systems are faced with an epidemic of type 2 diabetes. In the United Kingdom, clinical care is primarily provided by general practitioners (GPs) rather than hospital specialists. Intermediate care clinics for diabetes (ICCD) potentially provide a model for supporting GPs in their care of people with poorly controlled type 2 diabetes and in their management of cardiovascular risk factors. This study aims to (1) compare patients with type 2 diabetes registered with practices that have access to an ICCD service with those that have access only to usual hospital care; (2) assess the cost-effectiveness of the intervention; and (3) explore the views and experiences of patients, health professionals and other stakeholders. Methods/Design This two-arm cluster randomized controlled trial (with integral economic evaluation and qualitative study) is set in general practices in three UK Primary Care Trusts. Practices are randomized to one of two groups with patients referred to either an ICCD (intervention) or to hospital care (control). Intervention group: GP practices in the intervention arm have the opportunity to refer patients to an ICCD - a multidisciplinary team led by a specialist nurse and a diabetologist. Patients are reviewed and managed in the ICCD for a short period with a goal of improving diabetes and cardiovascular risk factor control and are then referred back to practice. or Control group: Standard GP care, with referral to secondary care as required, but no access to ICCD. Participants are adults aged 18 years or older who have type 2 diabetes that is difficult for their GPs to control. The primary outcome is the proportion of participants reaching three risk factor targets: HbA1c (≤7.0%); blood pressure (<140/80); and cholesterol (<4 mmol/l), at the end of the 18-month intervention period. The main secondary outcomes are the proportion of participants reaching individual risk factor targets and the overall 10-year risks for coronary heart disease(CHD) and stroke assessed by the United Kingdom Prospective Diabetes Study (UKPDS) risk engine. Other secondary outcomes include body mass index and waist circumference, use of medication, reported smoking, emotional adjustment, patient satisfaction and views on continuity, costs and health related quality of life. We aimed to randomize 50 practices and recruit 2,555 patients

    Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows

    Get PDF
    We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido

    Modulation of host responses by oral commensal bacteria.

    Get PDF
    Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens. The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR) signalling or NF-κB activation, or influence the development and activities of immune cells. However, the widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or commensal-derived immunomodulatory molecules

    Characterization of Human Osteoarthritic Cartilage Using Optical and Magnetic Resonance Imaging

    Get PDF
    Purpose: Osteoarthritis (OA) is a degenerative disease starting with key molecular events that ultimately lead to the breakdown of the cartilage. The purpose of this study is to use two imaging methods that are sensitive to molecular and macromolecular changes in OA to better characterize the disease process in human osteoarthritic cartilage. Procedures: Human femoral condyles were collected from patients diagnosed with severe OA during total knee replacement surgeries. T1ρ and T2 magnetic resonance measurements were obtained using a 3-Tesla whole body scanner to assess macromolecular changes in the damaged cartilage matrix. Optical imaging was performed on specimens treated with MMPSense 680 to assess the matrix metalloproteinase (MMP) activity. A linear regression model was used to assess the correlation of MMP optical data with T 1ρ magnetic resonance (MR) measurements. Slices from a representative specimen were removed from regions with high and low optical signals for subsequent histological analysis. Results: All specimens exhibit high T1ρ and T2 measurements in the range of 48–75 ms and 36– 69 ms, respectively. They also show intense photon signals (0.376 to 7.89×10 −4 cm 2) from th

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Inhaled tolafentrine reverses pulmonary vascular remodeling via inhibition of smooth muscle cell migration

    Get PDF
    BACKGROUND: The aim of the study was to assess the chronic effects of combined phosphodiesterase 3/4 inhibitor tolafentrine, administered by inhalation, during monocrotaline-induced pulmonary arterial hypertension (PAH) in rats. METHODS: CD rats were given a single subcutaneous injection of monocrotaline to induce PAH. Four weeks after, rats were subjected to inhalation of tolafentrine or sham nebulization in an unrestrained, whole body aerosol exposure system. In these animals (i) the acute pulmonary vasodilatory efficacy of inhaled tolafentrine (ii) the anti-remodeling effect of long-term inhalation of tolafentrine (iii) the effects of tolafentrine on the expression profile of 96 genes encoding cell adhesion and extracellular matrix regulation were examined. In addition, the inhibitory effect of tolafentrine on ex vivo isolated pulmonary artery SMC cell migration was also investigated. RESULTS: Monocrotaline injection provoked severe PAH (right ventricular systolic pressure increased from 25.9 ± 4.0 to 68.9 ± 3.2 after 4 weeks and 74.9 ± 5.1 mmHg after 6 weeks), cardiac output depression and right heart hypertrophy. The media thickness of the pulmonary arteries and the proportion of muscularization of small precapillary resistance vessels increased dramatically, and the migratory response of ex-vivo isolated pulmonary artery smooth muscle cells (PASMC) was increased. Micro-arrays and subsequent confirmation with real time PCR demonstrated upregulation of several extracellular matrix regulation and adhesion genes, such as matrixmetalloproteases (MMP) 2, 8, 9, 10, 11, 12, 20, Icam, Itgax, Plat and serpinb2. When chronically nebulized from day 28 to 42 (12 daily aerosol maneuvers), after full establishment of severe pulmonary hypertension, tolafentrine reversed about 60% of all hemodynamic abnormalities, right heart hypertrophy and monocrotaline-induced structural lung vascular changes, including the proportion of pulmonary artery muscularization. The upregulation of extracellular matrix regulation and adhesion genes was reduced by nearly 80% by inhalation of the tolafentrine. When assessed in vitro, tolafentrine blocked the enhanced PASMC migratory response. CONCLUSION: In conclusion, we demonstrate for the first time that inhalation of combined PDE3/4 inhibitor reverses pulmonary hypertension fully developed in response to monocrotaline in rats. This "reverse-remodeling" effect includes structural changes in the lung vascular wall and key molecular pathways of matrix regulation, concomitant with 60% normalization of hemodynamics
    corecore