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Abstract

We describe a computational protocol to aid the design of small molecule and peptide drugs that 

target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we 

explore multiple strategies, including finding binding hot spots, incorporating chemical similarity 

and bioactivity data, and sampling similar binding sites from homologous protein complexes. We 

demonstrate how to combine existing interdisciplinary resources with examples of semi-automated 

workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant 

mutations, drug promiscuity, and the design of dual-effect inhibitors.
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1 Introduction

Protein-protein interactions (PPI) are remarkably complex and diverse. They form intricate 

interaction networks where some proteins (so-called hubs) make connections to many other 

proteins. Despite the diversity and complexity, there are recurrent motifs in the PPI networks 

and protein-protein binding sites [1, 2]. PPI interaction networks can be perturbed by 

differential gene expression and disease mutations [3–6] and a lot of efforts have been 

undertaken to study how signal flow in the networks is altered by these factors and how 

drugs can reestablish the intricate balance. Targeting of PPIs for therapeutic intervention is 

very challenging because of the size and shape of their binding interfaces, e.g., planar 

interfaces lacking binding pockets, the difficulty to construct a functional assay to screen out 

affected interactions. Nevertheless, for the last several years there has been a considerable 

interest in PPI drug targets. Furthermore, many existing drugs have promiscuous effects on 

interaction pathways affecting highly connected protein hubs, while PPI inhibitors can be 

designed to achieve highly specific drug binding to a target protein complex. The success 

stories include the design of inhibitors of bromo-domains [7], Bax-BclXL [8], p53-MDM2 

[9], and VEGF receptor [10]. The up-to-date database 2P2Idb v.2 contains 27 structurally 

characterized protein-protein complexes and 274 protein-inhibitor complexes with 242 

unique small molecule inhibitors [11].

Predicting the phenotypic effects of mutations and molecular mechanisms of drugs cannot 

be achieved without the detailed knowledge of cellular pathways, interaction networks, and 

PPI binding interfaces. Studies on PPI binding site properties go back several decades, and 
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some of them reported an extensive similarity between protein interfaces even in the absence 

of sequence or structure similarity between proteins [12–15]. Since the current coverage of 

the human proteome with protein structural complexes remains limited, and the number of 

novel PPI binding sites in the PDB database grows slower than the number of protein 

complexes [16, 17], different computational methods have been proposed to close this gap. It 

has been shown that protein interactions and binding sites for human complexes can be 

predicted from homologous protein structural complexes of another species [18–20]. Such 

an inference approach may be supported by a recent work that examined the growth 

dynamics and evolutionary roots of PPI binding sites and found that a majority of binding 

sites could be traced back to the universal common ancestor of all cellular organisms [16].

There are several challenges in the structural design of PPI inhibitors. First, the inhibitor 

should bind relatively strongly to the protein target. This is achieved by mimicking the 

interactions between two proteins, especially those interactions between residues that 

contribute most to the binding energy, so-called binding hot spots. Second, many anti-cancer 

therapies are prone to acquired drug resistance which is a major challenge in cancer 

treatment. Therefore, the designed inhibitor (peptide or small molecule) should retain its 

properties, even if two interacting target proteins undergo extensive selection in the tumor to 

eliminate binding to these inhibitors while retaining binding between the two proteins. The 

latter task can be accomplished by inhibitor design along with in-silico mutagenesis. Finally, 

the inhibitors should be active with respect to not only the proposed PPI targets but also with 

respect to their paralogs. We illustrate the PPI inhibitor design principles using the p53-

MDM2 interaction as an example.

2 Materials

2.1 Online Resources

1. IBIS https://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi [21, 22]; IBIS API 

https://www.ncbi.nlm.nih.gov/research/ibis-api/.

2. PubChem BioAssay (https://pubchem.ncbi.nlm.nih.gov) [23, 24].

3. MutaBind (https://www.ncbi.nlm.nih.gov/research/mutabind/) [25, 26].

4. NCI drug dictionary (http://www.cancer.gov/publications/dictionaries/cancer-

drug) [27].

5. Drug sensitivity in cancer (http://www.cancerrxgene.org/translation/Drug).

6. 2P2Idb database v2 (http://2p2idb.cnrs-mrs.fr/) [11].

7. Binding DB (https://www.bindingdb.org/bind/) [28].

8. SAAMBE and HotRegion (http://prism.ccbb.ku.edu.tr/hotregion/) [29, 30].

2.2 Software

1. KNIME (https://www.knime.org).
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3 Methods

3.1 Practical Challenges in Cancer Drug Design: p53-MDM2 Inhibitors

Cytotoxicity of cancer drugs may lead to genomic instability and consequently to the 

activation of the p53 tumor suppressor. E3 ubiquitin-protein ligase (MDM2) endogenously 

inhibits p53, and the disruption of an interaction between the p53 transactivation domain and 

MDM2 leads to the activation of p53. MDM2 negatively regulates the p53 pathways and is 

often overexpressed in tumor cells. Different small molecule and stapled peptide-based 

drugs have been designed to inhibit the p53-MDM2 interaction [31, 32]. One of the very 

well-studied small molecule p53-MDM2 inhibitors is Nutlin-3 that exhibits anti-cancer 

effects even in those cells that do not express functional p53 via mechanisms involving p73 

and E2F1 activation [33]. Other p53-MDM2 inhibitors are currently under clinical trials. 

Stapled peptides that inhibit protein-protein interactions are an emerging class of drugs since 

they can better resist the cancer clonal selection leading to drug resistance. Their 

effectiveness can be explained by a more extensive interface between the peptides and 

proteins compared to small molecules, so that a larger number of acquired drug-resistant 

mutations on the p53-MDM2 interface can be targeted.

3.2 Exploring Binding Interfaces of Homologous Protein Complexes

To find protein complexes that can potentially be targeted by small molecules, one can 

examine a superposition of protein-protein and protein-small molecule binding interfaces in 

the existing structural complexes and find if their binding modes overlap. This procedure can 

help detect druggable PPIs. Several methods have been proposed that explore different types 

of structurally homologous complexes to detect so-called multibinding interfaces [34, 35]. In 

the current study, we use the Inferred Biomolecular Interaction Server (IBIS) method [21, 

22] that clusters similar binding sites found in homologous proteins based on their sequence 

and structure conservation, and validates these using various approaches. Analysis of IBIS 

binding site clusters offers an opportunity to directly compare PPI interfaces with protein-

small molecule or with protein-peptide interfaces to identify those interfaces that can be 

potentially targeted by small molecules or peptides.

According to IBIS, there are three conserved binding site clusters between MDM2 and small 

molecules, and one conserved binding site cluster between MDM2 and p53 (PDB 1YCR 

used as a query in IBIS). IBIS allows one to compare binding sites of MDM2-p53 

interactions with the binding sites of MDM2-small molecule complexes. As can be seen in 

Fig. 1, eight sites (sites 38, 41, 42, 45, 46, 77, 80, and 84) from the second protein-small 

molecule binding site cluster extensively overlap with the MDM2-p53 binding site cluster. It 

is also clear that the third small molecule binding site cluster overlaps with MDM2-p53 only 

partially (by one to two residues) and even without activity assays, one might suggest that 

the small molecules from this cluster might not be good inhibitors of this interaction and 

therefore not relevant drugs.

3.3 Identifying Binding Hot Spot Sites

It is challenging to develop modulators of protein–protein interactions because protein–

protein interfaces are flat and lack binding pockets [37]. However, binding energy is usually 
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determined by a small number of binding “hot spots” [38]. Targeting binding hot spots in 

drug design is a simpler and more straightforward strategy. Resistance developed within the 

tumor cell subpopulations by utilizing preexisting or acquired mutations (drug resistance 

mutations) may also be predicted from examining binding hot spots.

Binding hot spots can be identified in silico, by calculating the evolutionary conservation of 

binding sites or by scanning of PPI interfaces and calculating changes in binding affinity 

upon amino acid substitutions (for example alanine scanning). This task can be achieved by 

recently developed methods MutaBind and Hot-Region. MutaBind uses molecular 

mechanics force fields, statistical potentials, and fast side-chain optimization algorithms 

[25]. The MutaBind server maps mutations on a structural protein complex, calculates the 

associated changes in binding affinity, determines the deleterious effect of a mutation, 

estimates the confidence of this prediction, and produces a mutant structural model for 

download. The HotRegion approach uses residue network topology and a statistical pairwise 

contact energy function [30].

Below is a step-by-step protocol to predict the impact of mutations on binding affinity of 

MDM2-p53 using MutaBind:

1. Open MutaBind web page (see Subheading 2) and use the PDB code 1YCR as 

an input.

2. Drag and drop “chain A” (MDM2) into the “Partner 1” box and “chain B” (p53) 

into the “Partner 2” box.

3. Select “Chain A” and binding site residues annotated by IBIS (Fig. 1b) to 

mutate; mutate them into alanine. Each mutation will be treated independently. 

Please note the residue numbering difference between PDB (MutaBind uses PDB 

numbering) and IBIS (IBIS uses the full protein sequence numbering).

Table 1 shows that 12 alanine-scanning mutations are predicted to have deleterious 

destabilizing effects on the MDM2-p53 interaction (potential binding hot spots). Among 

these potential binding hot spots, eight are responsible for the interaction with Nutlin-3a 

inhibitor, whereas nine alanine-scanning mutations are predicted to be deleterious for the 

paralogous MDMX-p53 interaction (see the next section). Overall, five evolutionarily 

conserved binding hot spots overlap between MDM2-p53, MDM2-Nutlin-3a, and MDMX-

p53 complexes are highlighted in bold fonts in Table 1.

3.4 Polypharmacology of Dual PPI Inhibitors

Drugs, including PPI inhibitors, may interact with multiple targets, inhibiting multiple PPIs 

and affecting various pathways. While cytotoxic in some cases, such polypharmacologic 

effects are desirable in other cases. For example, while targeting the p53-MDM2 interaction, 

the potency for paralogous interaction with MDMX should also be achieved. MDMX is 

structurally similar to MDM2 but lacks its p53 ubiquitin-mediated degradation activity. 

Nevertheless, MDMX can repress p53 and the effectiveness of p53-MDM2 inhibitors would 

be compromised in cells overexpressing MDMX [39]. Currently, several small-molecule 

dual p53-MDMX/MDM2 inhibitors are under development [40].
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A solution to this problem of finding dual inhibitors requires extensive sampling of protein–

small molecule binding modes in the space of similar binding interfaces of homologous 

complexes. For example, by querying IBIS with the MDMX-p53 structural complex (PDB 

3DAB), one can see that MDM2-p53 and MDMX-p53 binding interfaces are similar 

(explore the first binding site cluster for “protein-peptide” interactions in IBIS, since 

disordered p53 is classified as peptide). Figure 2 illustrates a structural superposition of 

MDM2, p53 peptide, and Nutlin-3a small molecule. According to IBIS and MutaBind, the 

major binding hot spot residues (in bold in Table 1) are retained in both paralogous proteins 

and can be targeted in designing inhibitors that disrupt both p53-MDM2 and p53-MDMX 

interactions (Table 1).

In addition to the IBIS webserver, we provide an application program interface (API), 

discussed in the sections below, to identify binding sites from homologous structures and to 

find other compounds that would bind homologous complexes (Table 2, Fig. 3). We 

illustrate a combination of IBIS APIs with PubChem APIs in an example workflow in Figs. 

4 and 5.

3.5 Incorporating Chemical Similarity and Biological Activity Data

While the biological relevance of binding interfaces via protein similarities can be assessed 

using the IBIS method, putative drug target alternatives can also be explored using the 

PubChem database [23]. PubChem is an open archive of chemical biology information 

including an expansive set of putative drug targets and bioactivity test results. PubChem 

currently contains over 92M unique chemical compounds and 3.6M substances evaluated for 

biological activity involving over 10K protein and 20K gene targets. Information can be 

obtained using the web interface, downloading from the FTP site or using programmatic 

tools as utilized in this protocol.

Similar compounds can have similar or optimized biological actions, such as the disruption 

of a protein-protein interaction binding interface. Given a query small molecule, a set of 

similar compounds can be retrieved via the proposed IBIS API, which, in turn, makes use of 

the PubChem REST API including both 2D and 3D chemical similarity searches. These two 

types of similarity searches complement each other. For 2D compound similarity, 

precomputed sets of binary fingerprints representing the constituent chemical substructures 

are compared to ensure that the key components of a query molecule are preserved. Using a 

3D similarity search, shape features of the molecules can be compared to minimize steric 

hindrance in binding pockets.

In some cases, as for example in PDB 4HG7, a co-crystallized molecule corresponds to the 

compound of interest, nutlin-3a. In other cases (e.g., 2NOU, 1T4E, 3VGB, 3U15), the bound 

small molecules may be different enough to ensure that a compound receives a unique 

identifier, but their biological activity may be similar. In order to address such cases, an 

“expansion” of query compounds using similar compounds may be very useful for 

identifying all relevant hits. We illustrate this approach in an example workflow in Figs. 4 

and 5, where an IBIS API (see also Table 2) is used to find similar compounds, and then for 

each compound a list of proteins is found that bind this compound. Finally, all protein-small 

molecule binding sites are identified for each structure in the list.
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In the search for putative drug targets, PubChem offers a wealth of pertinent information to 

help choose one alternative over another. In combination with the chemical structure search, 

the large collection of bioactivity test results in PubChem [23, 24] provide the details 

required to narrow down a list of candidates. In a first pass, molecules designated “active,” 

as defined by the original experimentalist, can be compared using filters on bioassay types 

like toxicity studies. If required, detailed analysis can be performed on individual assay 

experiments which contain large amounts of supporting data and explanations.

Finally, PubChem has collected extensive annotations for many chemical compounds. These 

include, but are not limited to, safety and hazard, pharmacological, toxicity, patent, vendor, 

interaction and pathway, classification and synonym annotations. Such annotations impact 

clinical and practical considerations like adverse reactions and purchasing. They also assist 

in making connections among existing literature references and categorizations.

3.6 Building Semiautomatic Workflows Using REST Services

Over the years, computational biology and computational chemistry communities have built 

a large number of services and resources. Some resources are integral parts of infrastructures 

provided by the large players such as EBI, NCBI, or PDB. However, integrating these 

resources in data analysis pipelines remains a tedious task that takes up significant amounts 

of project time and resources.

Some databases and web services can be combined in a modular way in workflows, thereby 

empowering users to perform complex interdisciplinary analytical processes. A workflow 

integrates a range of services to perform data-processing tasks. A service can be local or 

remote, it receives data and parameters as input, processes the request and returns the 

results. Although each service has a simple interface, complexity of workflows arises from 

the combination of services. The structure of a workflow is defined by the user and specific 

tasks. Automated workflows provide a way toward reproducible research. However, 

reproducibility becomes a complicated issue with distributed services as part of the 

workflow. Web services typically have a version prefix to make their interfaces and behavior 

backward-compatible. However, the databases are perpetually being updated and the API 

calls may return different data the next time a workflow is executed.

Pipelines and automated workflows have a long history in drug discovery, particularly with 

the advent of high-throughput screening. As robots speed up experiments at the bench, in-

silico drug-screening is accelerated by computational pipelines [41]. For instance, the 

Chemistry Development Toolkit (CDK) has plugins to both KNIME and Taverna [42, 43]. A 

popular commercial small-molecule drug discovery and protein modeling suite by 

Schrödinger is automated with KNIME. KNIME may be more suited as a data mining tool 

[44] and may therefore be more appropriate for drug discovery applications involving data 

processing in addition to automated execution.

Several primers on connecting proteins with compounds using workflows and distributed 

web services exist, for example using BindingDB and KNIME [28, 45]. One of our goals 

here is to provide a primer on data mining in drug discovery for modulating and inhibiting 

protein-protein interactions. We exemplify an approach implemented with KNIME. Taverna 
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Workflow Management System [46] is an open platform under the Apache project, 

guaranteeing a long-term development commitment. Taverna offers prebuilt packages with 

Bioinformatics services and a comprehensive online repository for open exchange of 

workflows between users—MyExperiment [47]. The latter is a social network for the 

scientific community facilitating sharing of workflows and snippets. Creators and 

maintainers of web services may choose to list them in online catalogs, making it easier for 

the users to find, annotate, and monitor distributed services. Biocatalogue [48] is the largest 

online registry of SOAP and REST Web services, and all its services can be loaded into 

Taverna Workbench or into KNIME.

Web services operate on the top of the HTTP protocol, which is used as transport for the 

web. XML-based web-services, such as SOAP and WSDL specifications, became 

widespread in computational biology and cheminformatics, and are still well maintained. 

However, standardization of web browsers and JavaScript—frontend and backend 

frameworks stimulated a transition to RESTful services using a lightweight JSON-based 

(JavaScript Object Notation) data exchange. While XML-derived data formats remain 

heavily used, many services now support JSON in addition to XML. With REST, services 

behave more like documents or resources that are uniquely identified with a URI address. 

Not only does this approach simplify the development and scalability of servers but also 

allows one to create clients in a simple way in any modern scripting language: Perl, Python, 

or JavaScript.

Table 2 describes a list of IBIS REST resources that we created to facilitate drug discovery 

workflows aimed at protein-protein interaction inhibitors. All the following resources use 

HTTPS “GET” to retrieve single entries and “POST” to submit multiple entries. Examples 

of JSON formatted results for two IBIS API calls (a) requesting inferred protein-protein 

binding sites for a given protein structure and (b) requesting similar compounds given a 

PubChem compound ID are shown in Fig. 3. These API calls may be arranged in workflows 

accepting protein and gene names, protein structure, or small molecule identifier as input. A 

listing of a Python script (Fig. 4) illustrates the workflow where output of one API call is 

passed as input to another API call, thus creating a rather complex analysis pipeline. The 

script in Fig. 4 retrieves a list of small molecule compounds similar to Nutlin-3a, identifies 

the PDB structures where any of these compounds is cocrystallized with a protein, and uses 

IBIS to retrieve description of protein-small molecule binding sites. Due to the simplicity of 

implementation of HTTP clients, the script implementing this pipeline remains relatively 

short and easy to read. In addition to programmatic access to IBIS REST API, a graphical 

representation of workflows can be created, for example using KNIME, as we illustrate in 

Fig. 5. The diagram shown in Fig. 5 implements the same workflow as in the Python script 

shown in Fig. 4.
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Fig. 1. 
Analysis of conserved binding sites using IBIS method with PDB 1YCR as a query. (a) 

MDM2 sequence annotation using Conserved Domain Database [36]; (b) Conserved protein 

binding sites between MDM2 and p53; (c) Conserved protein binding sites between MDM2 

and small molecules. Residues are numbered with respect to the full protein sequence. 

Colors of binding site residues correspond to their conservation among homologs: conserved 

residues are colored in red, less conserved in blue and nonconserved in gray
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Fig. 2. 
A superposition of MDM2-p53 (PDB code: 1YCR) and MDM2-Nutlin-3a complex (PDB 

code: 4HG7) structures
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Fig. 3. 
Examples of results of API calls: (a) to find inferred protein-protein binding sites for E3 

Ubiquitin-protein Ligase MDM2 (PDB ID 4HG7); JSON structure shows a list of binding 

site residues from a nutlin-resistant structure of MDM2 (PDB ID 4UMN) with a stapled 

peptide; (b) A list of similar small molecule compounds for nutlin-3a (PubChem compound 

ID 11433190)
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Fig. 4. 
An example of a programmatic implementation (in Python 3) of a workflow for finding 

binding sites of similar small molecules in protein structures, given a PubChem Compound 

identifier. The workflow is using three IBIS API calls described in Table 2
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Fig. 5. 
An example of a workflow diagram built in KNIME using three REST API calls (shown in 

the figure legend). The workflow identifies binding sites of similar small molecules in 

protein structures, given a PubChem Compound identifier as an input. Nodes denote 

services, while arrows show direction of information flow in the workflow. Red lines show 

assignment of variables in the flow control structures
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Table 2

Applications program interface (API) to extract and process data on protein-protein and protein-small 

molecule interactions

URI Description of retrieved results

/structures/protein/<PROTEIN> PDB and chain identifiers given a human gene name or a UniProt protein name

/structures/compound/<CID> PDB identifiers containing a given PubChem compound

/sites/obs/protein/pdb/<PDB>[/<CHAIN>] Observed protein-protein binding site residues given a PDB identifier and an optional chain 
identifier. Each binding site specifies two interacting chains, the interacting domains and a list 
of residues

/sites/obs/compound/pdb/<PDB>[/<CHAIN>] Observed protein-small molecule binding sites for each compound in a given protein structure

/sites/obs/peptide/pdb/<PDB>[/<CHAIN>] Observed protein-peptide binding sites given a protein structure. The interacting peptide 
sequence is returned as well

/sites/obs/compound/compound/<CID> Proteins and observed protein-small molecule binding sites given a compound of interest

/sites/inf/protein/pdb/<PDB>[/<CHAIN>] Inferred protein-protein binding site residues given a protein structure

/sites/inf/peptide/pdb/<PDBID>[/<CHAIN>] Inferred protein-peptide binding site residues given a PDB and an optional chain identifier

/sites/inf/compound/pdb/<PDB>[/<CHAIN>] Inferred protein-small molecule binding site residues given a protein structure

/compounds/similar/compound/<CID> Similar small molecule compounds given a small molecule. Performs both 2D fingerprint and 
3D fast searches

All IBIS API resources have a prefix “https://www.ncbi.nlm.nih.gov/research/ibis-api/rest/v1,” followed by more specific parts of the URI. 
Required parameters are specified in angle brackets, while optional parameters are specified in square brackets. The following parameters specified 
in angle brackets are used: <CID> PubChem compound identifier; <PDB> <CHAIN> PDB and chain identifiers. Additional instructions are 
available online at https://www.ncbi.nlm.nih.gov/research/ibis-api/
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