1,193 research outputs found
Single-photon exchange interaction in a semiconductor microcavity
We consider the effective coupling of localized spins in a semiconductor
quantum dot embedded in a microcavity. The lowest cavity mode and the quantum
dot exciton are coupled and close in energy, forming a polariton. The fermions
forming the exciton interact with localized spins via exchange. Exact
diagonalization of a Hamiltonian in which photons, spins and excitons are
treated quantum mechanically shows that {\it a single polariton} induces a
sizable indirect exchange interaction between otherwise independent spins. The
origin, symmetry properties and the intensity of that interaction depend both
on the dot-cavity coupling and detuning. In the case of a (Cd,Mn)Te quantum
dot, Mn-Mn ferromagnetic coupling mediated by a single photon survives above 1
K whereas the exciton mediated coupling survives at 15 K.Comment: 4 pages, 3 figure
In-gap impurity states as the hallmark of the Quantum Spin Hall phase
We study the different response to an impurity of the two topologically
different phases shown by a two dimensional insulator with time reversal
symmetry, namely, the Quantum Spin Hall and the normal phase. We consider the
case of graphene as a toy model that features the two phases driven,
respectively, by intrinsic spin-orbit coupling and inversion symmetry breaking.
We find that strictly normalizable in-gap impurity states only occur in the
Quantum Spin Hall phase and carry dissipationless current whose quirality is
determined by the spin and pseudospin of the residing electron. Our results
imply that topological order can be unveiled by local probes of defect states.Comment: 5 pages, 3 figure
Single exciton spectroscopy of semimagnetic quantum dots
A photo-excited II-VI semiconductor nanocrystal doped with a few Mn spins is
considered. The effects of spin-exciton interactions and the resulting
multi-spin correlations on the photoluminescence are calculated by numerical
diagonalization of the Hamiltonian, including exchange interaction between
electrons, holes and Mn spins, as well as spin-orbit interaction. The results
provide a unified description of recent experiments of photoluminesnce of dots
with one and many Mn atoms as well as optically induced ferromagnetism in
semimagnetic nanocrystals.Comment: 5 pages, 3 figure
Spin depolarization in the transport of holes across GaMnAs/GaAlAs/p-GaAs
We study the spin polarization of tunneling holes injected from ferromagnetic
GaMnAs into a p-doped semiconductor through a tunneling barrier. We obtain an
upper limit to the spin injection rate. We find that spin-orbit interaction
interaction in the barrier and in the drain limits severely spin injection.
Spin depolarization is stronger when the magnetization is parallel to the
current than when is perpendicular to it.Comment: Accepted in Phys. Rev. B. 4 pages, 4 figure
Spin splitting in a polarized quasi-two-dimensional exciton gas
We have observed a large spin splitting between "spin" and
heavy-hole excitons, having unbalanced populations, in undoped GaAs/AlAs
quantum wells in the absence of any external magnetic field. Time-resolved
photoluminescence spectroscopy, under excitation with circularly polarized
light, reveals that, for high excitonic density and short times after the
pulsed excitation, the emission from majority excitons lies above that of
minority ones. The amount of the splitting, which can be as large as 50% of the
binding energy, increases with excitonic density and presents a time evolution
closely connected with the degree of polarization of the luminescence. Our
results are interpreted on the light of a recently developed model, which shows
that, while intra-excitonic exchange interaction is responsible for the spin
relaxation processes, exciton-exciton interaction produces a breaking of the
spin degeneracy in two-dimensional semiconductors.Comment: Revtex, four pages; four figures, postscript file Accepted for
publication in Physical Review B (Rapid Commun.
The Impact of Weather on Influenza and Pneumonia Mortality in New York City, 1975–2002: A Retrospective Study
The substantial winter influenza peak in temperate climates has lead to the hypothesis that cold and/or dry air is a causal factor in influenza variability. We examined the relationship between cold and/or dry air and daily influenza and pneumonia mortality in the cold season in the New York metropolitan area from 1975–2002. We conducted a retrospective study relating daily pneumonia and influenza mortality for New York City and surroundings from 1975–2002 to daily air temperature, dew point temperature (a measure of atmospheric humidity), and daily air mass type. We identified high mortality days and periods and employed temporal smoothers and lags to account for the latency period and the time between infection and death. Unpaired t-tests were used to compare high mortality events to non-events and nonparametric bootstrapped regression analysis was used to examine the characteristics of longer mortality episodes. We found a statistically significant (p = 0.003) association between periods of low dew point temperature and above normal pneumonia and influenza mortality 17 days later. The duration (r = −0.61) and severity (r = −0.56) of high mortality episodes was inversely correlated with morning dew point temperature prior to and during the episodes. Weeks in which moist polar air masses were common (air masses characterized by low dew point temperatures) were likewise followed by above normal mortality 17 days later (p = 0.019). This research supports the contention that cold, dry air may be related to influenza mortality and suggests that warning systems could provide enough lead time to be effective in mitigating the effects
Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells
We have shown experimentally that an electric field decreases the energy
separation between the two components of a dense spin-polarized exciton gas in
a coupled double quantum well, from a maximum splitting of meV to
zero, at a field of 35 kV/cm. This decrease, due to the field-induced
deformation of the exciton wavefunction, is explained by an existing
calculation of the change in the spin-dependent exciton-exciton interaction
with the electron-hole separation. However, a new theory that considers the
modification of screening with that separation is needed to account for the
observed dependence on excitation power of the individual energies of the two
exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press
Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom
The interaction of electrons with a periodic potential of atoms in
crystalline solids gives rise to band structure. The band structure of existing
materials can be measured by photoemission spectroscopy and accurately
understood in terms of the tight-binding model, however not many experimental
approaches exist that allow to tailor artificial crystal lattices using a
bottom-up approach. The ability to engineer and study atomically crafted
designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS)
helps to understand the emergence of material properties. Here, we use atom
manipulation of individual vacancies in a chlorine monolayer on Cu(100) to
construct one- and two-dimensional structures of various densities and sizes.
Local STS measurements reveal the emergence of quasiparticle bands, evidenced
by standing Bloch waves, with tuneable dispersion. The experimental data are
understood in terms of a tight-binding model combined with an additional
broadening term that allows an estimation of the coupling to the underlying
substrate.Comment: 7 figures, 12 pages, main text and supplementary materia
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors
Ferromagnetism is predicted in undoped diluted magnetic semiconductors
illuminated by intense sub-bandgap laser radiation . The mechanism for
photo-induced ferromagnetism is coherence between conduction and valence bands
induced by the light which leads to an optical exchange interaction. The
ferromagnetic critical temperature T_C depends both on the properties of the
material and on the frequency and intensity of the laser and could be above 1
K.Comment: 11 pages, 2 figures, preprint styl
Non-Communicable Disease Mortality and Risk Factors in Formal and Informal Neighborhoods, Ouagadougou, Burkina Faso: Evidence from a Health and Demographic Surveillance System
The expected growth in NCDs in cities is one of the most important health challenges of the coming decades in Sub-Saharan countries. This paper aims to fill the gap in our understanding of socio-economic differentials in NCD mortality and risk in low and middle income neighborhoods in urban Africa. We use data collected in the Ouagadougou Health and Demographic Surveillance System. 409 deaths were recorded between 2009–2011 among 20,836 individuals aged 35 years and older; verbal autopsies and the InterVA program were used to determine the probable cause of death. A random survey asked in 2011 1,039 adults aged 35 and over about tobacco use, heavy alcohol consumption, lack of physical activity and measured their weight, height, and blood pressure. These data reveal a high level of premature mortality due to NCDs in all neighborhoods: NCD mortality increases substantially by age 50. NCD mortality is greater in formal neighborhoods, while adult communicable disease mortality remains high, especially in informal neighborhoods. There is a high prevalence of risk factors for NCDs in the studied neighborhoods, with over one-fourth of the adults being overweight and over one-fourth having hypertension. Better-off residents are more prone to physical inactivity and excessive weight, while vulnerable populations such as widows/divorced individuals and migrants suffer more from higher blood pressure. Females have a significantly lower risk of being smokers or heavy drinkers, while they are more likely to be physically inactive or overweight, especially when married. Muslim individuals are less likely to be smokers or heavy drinkers, but have a higher blood pressure. Everything else being constant, individuals living in formal neighborhoods are more often overweight. The data presented make clear the pressing need to develop effective programs to reduce NCD risk across all types of neighborhoods in African cities, and suggest several entry points for community-based prevention programs
- …