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Impurity states in the quantum spin Hall phase in graphene
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Two-dimensional insulators with time-reversal symmetry can have two topologically different phases, the
quantum spin Hall and the normal phase. The former is revealed by the existence of conducting edge states that
are topologically protected. Here we show that the reaction to impurity, in bulk, is radically different in the two
phases and can be used as a marker for the topological phase. Within the context of the Kane-Mele model for
graphene, we find that strictly normalizable in-gap impurity states only occur in the quantum spin Hall phase and
carry a dissipationless current whose chirality is determined by the spin and pseudospin of the residing electron.
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I. INTRODUCTION

The intrinsic properties of an electron gas are revealed in
the way it reacts to the presence of a localized perturbation. In
metals, the period of Friedel oscillations provides information
about the Fermi surface.1 In semiconductors, the binding
energy of shallow acceptors and donor states depends on the
effective mass and dielectric constant of the host material.2 In
superconductors, both the impurity induced modulations of the
density of states3 and the presence of zero energy or midgap
states,4 reveal the symmetry of their order parameter. Here we
address the fundamental question of whether two-dimensional
topological insulators react to a localized perturbation in a way
different from conventional insulators.

Topological insulators5 have a bulk band gap like a
normal insulator but have protected conducting states on their
edges and surfaces. This bulk-boundary correspondence has
been rigorously established6,7 in boundaries that preserve the
translational invariance in at least one dimension. In two-
dimensional topological insulators, edge state are expected
to present quantized conductance8–11 which can be used to
unveil the existence of bulk topological order.12 More recently,
the bulk-boundary correspondence has been extended to the
case of topological defects that lead to Hamiltonians H(k,r)
that vary slowly with adiabatic parameters r surrounding the
defect.13,14

Here we explore the electronic structure of a two-
dimensional insulator, that can be either in the quantum spin
Hall (QSH) or in the normal phase, in the neighborhood of
an isoelectronic impurity that creates a repulsive short-range
potential. We find that only in the QSH phase in-gap states
appear and have exotic electronic properties: they carry non-
dissipative spin current. Our finding provides an alternative
way to detect topological order, using local probes sensitive to
the density of states in the neighborhood of the impurities.

We use gapped graphene as a toy model for two-
dimensional topological insulators.8,9 The electronic proper-
ties of graphene are intimately related to the structure of the
honeycomb lattice, formed by two interpenetrating triangular
sublattices, A and B, related by inversion symmetry, which
define a pseudospin degree of freedom that we denote with
the operator τz. There are two ways to open a gap in graphene
preserving the size of its two atom minimal unit cell. Both lead
to interesting electronic phases. A conventional gap opens

in graphene when a sublattice symmetry breaking potential,
�0
2 τz, is included in the Hamiltonian. This gap entails peculiar

electronic properties: the two valleys carry orbital currents
of opposite sign.15 When the gap is opened by intrinsic
spin orbit coupling, as described with the second-neighbor
spin-dependent hopping proposed by Kane-Mele, graphene is
in the QSH phase.

The rest of this paper is organized as follows. In Sec. II we
review the Kane-Mele model for gapped graphene without
impurities. In Sec. III we study the appearance of in-gap
impurity states due to a localized repulsive potential. We
consider both the full lattice description, as well as the
continuum limit and we discuss the properties of the wave
function of the in-gap state. In Sec. IV we show that,
associated to the in-gap state, there is a spin current with two
contributions, one coming from the in-gap state and the other
coming from the perturbed band states. Our conclusions are
presented in Sec. V.

II. THE MODEL

The Kane-Mele8,9 tight-binding Hamiltonian H0 describes
electrons in a hexagonal lattice, with first neighbor hopping t ,
spin-dependent second neighbor hopping tso and the �0

2 τz term.
This model commutes with Sz, the spin projection perpendic-
ular to the graphene plane, and each spin sector is identical to
the Haldane model16 for spinless fermions. We consider the
effect of a substitutional isoelectronic impurity, described with
a single-site potential, in an otherwise boundless and perfect
gapped system:

H = H0 + V0

∑
s

|0s〉〈0s|. (1)

The strength of the spin-independent impurity potential is V0,
and acts only on the atom 0 of the A sublattice.

For each spin channel s, the crystal Hamiltonian H0 can be
written in the form of a 2 × 2 matrix in the sublattice basis:

Hs
k = t[f (k)τ+ + f ∗(k)τ−] + �0

2
τz + stso g(k)τz, (2)

where �τ = (τx,τy,τz) are the Pauli matrices in the sublattice
space, τ± = τx ± iτy , s = ±1 are the eigenvalues of the spin
operator Sz. f (k) and g(k) are the usual functions that sum the
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FIG. 1. (Color online) Top panel: energy bands for the s = +
spin channel, with tso = 0.1t , and four different values of �0.
Middle panel: evolution of bands at K and K ′ and in-gap impurity
energy Eb(�0) calculated both with the lattice model (black) and
the continuum model (red). Bottom panel: in-gap impurity energy
Eb(�0) for a repulsive potential V0 = 100t (dashed line) and for a
attractive potential V0 = −100t (dotted line).

Bloch phase over the nearest and path-dependent next-nearest
neighbors.9

The Bloch Hamiltonian is identical to that of a (pseudo)spin
�τ in an effective field: Hs

k = �hs
k · �τ , where

�hs
k =

[
tf (k) + tf ∗(k), tf (k) − tf ∗(k),

�0 + tso g(k)

2

]
.

The energy bands for the model are given by εν,s(k) = ±εs
k,

where ν = ± labels the two bands (per spin channel) and εs
k ≡

|�hs
k|. In the top panel of Fig. 1 we plot them for a given value of

s, along the line that joins the Dirac points K and K ′, all of them
with the same values of t and tso = 0.1t and different values
of �0. Time-reversal invariance ensures that, for the opposite
spin orientations, we have εν,s(k) = εν,s(−k). The K and K ′
points define the so-called valley index σ = ±1. These points
are special because the in-plane components of the effective
field �hs

k vanish, making the energy splitting between the bands

minimal. At K and K ′ we have �hs
k = (0,0,γsσ ) with

γsσ = 1
2 (�0 + sσ�1) , (3)

where sσ can take only two values sσ = ±1 and �1 = 6
√

3tso.
Thus, at the Dirac point the wave functions have a well defined
sublattice (τz) character. The effective field at the Dirac points,
±γsσ , defines the top of the valence band and bottom of the
conduction band at each valley. We plot them in the low panel
of Fig. 1.

In the transition from the QSH phase, with γ− < 0 to the
normal phase, with γ− > 0, the system closes the gap (γ− =
0), reflecting the impossibility of deforming adiabatically one
phase into the other.8,9 In the QSH phase, the energy splitting
is finite at both valleys, the orientation of the effective field �hs

k
is opposite at K and K ′, for a given s. In this phase, the model
presents topologically protected edge states inside the gap,
making the edge metallic. At the normal phase, with γ− > 0
the orientation of the effective field �hs

k is now the same at both
valleys and a gap opens in the edge states.

III. IN-GAP STATES

We now explore the possible appearance of in-gap states
in the two insulating phases of the model in the presence
of the impurity potential, as described by Eq. (1). This is
different from previous works that have studied the influence of
impurities on the conducting surface states of 3D topological
insulators.17,18 We address our problem using the T -matrix
formalism,19 which has been widely used in the context of
graphene.20–25 We define the Green function operators, G(z) ≡
(zI − H)−1, and G0(z) ≡ (zI − H0)−1, where z is a complex
number and I is the unit matrix in the Hilbert space of the
infinite lattice. A closed expression for the Green function
G0(z) can be readily obtained in terms of the eigenstates of
Hs

k. For the on-site spin-independent potential, the complete
Green function is related to G0(z) by

G(z) = G0(z) + G0(z)|0〉 V0

1 − V0G0
0,0(z)

〈0|G0(z), (4)

where G0
0,0(z) is the unperturbed Green function diagonal

matrix element in the atomic representation and 0 is the atom
at which the perturbation is located.

The appearance of bound states with energy Eb would be
given by the existence of poles of G in the band gap defined
by Hs

k. Thus, we have to solve the equation

G0
0,0(Eb) = 1

V0
. (5)

A. Lattice model

In order to have a closed expression for G0
0,0(Eb) we use the

Lehman representation and project over the site representation.
Any given site in the lattice i can be identified by its unit cell �Ri

and the sublattice τi = A,B. The unperturbed Green function
is written in terms of the eigenstates of the crystal Hamiltonian

|ν,k,s〉 = 1√
N

∑
�R,τ

eik·RU s
ν,k,τ | �Rτ,s〉,
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where N is the number of unit cells of the crystal, andU s
ν,k,τ are

the components of the eigenstates of the Bloch Hamiltonian
in Eq. (2). If we express the effective field in spherical
coordinates as, �hs

k = εs
k

(
sin θs

k cos ϕs
k, sin θs

k sin ϕs
k, cos θs

k

)
,

the corresponding wave functions for the ν = ± bands read

U s
−,k,A = sin

(
θ

2

)
e−iϕ, U s

−,k,B = − cos

(
θ

2

)
,

U s
+,k,A = cos

(
θ

2

)
e−iϕ, U s

+,k,B = sin

(
θ

2

)
, (6)

where we have omitted the subscripts from θ and ϕ for the
sake of clarity. The unperturbed Green function matrix can be
written as

G0
ij (z) = 1

N

∑
k,ν

ek·(Ri−Rj)

z − εk,ν

(
U s

ν,k,τi

)∗U s
ν,k,τj .

(7)

Using this expression in combination with Eq. (6), we can
recast Eq. (5) as

1

V0
= 1

2N

∑
k

[
1 − �ns

k · ẑ
Eb + εs

k
+ 1 + �ns

k · ẑ

Eb − εs
k

]
, (8)

where �ns
k = �hs

k/ε
s
k. Importantly, the Green function G0

00(z) is
expressed as a sum over the whole Brillouin zone of a function
that depends on the projection of the effective field vector and,
as such, it contains information of the topology of the Bloch
states, which is a necessary condition to expect a relation
between the solutions of Eq. (8) and the topological order in
the system.

Equation (8) can be analytically solved in the strong cou-
pling limit V −1

0 = 0, in two cases. For �0 = 0, the repulsive
potential yields a midgap state Eb = 0 whose properties we
discuss below. For �1 = 0, there is a solution with Eb =
−�0/2, in agreement with a general result.26 However, this
solution is degenerate with the top of the valence band and it is
a resonance rather than an actual in-gap state. The interpolation
between these two limits is obtained by the numerical solution
of Eq. (8) and is shown in the middle panel of Fig. 1 for
V0 = 106t . Bound states are only found when V0 > t and,
interestingly, only when �0 < �1, i.e., in the topological
insulator phase. This is the main result of the paper: we find
that a local impurity can bind an in-gap state only in the QSH
phase.

The effect of the sign of the impurity potential is shown
in the bottom panel of Fig. 1. Depending on the sign of the
impurity potential, the in-gap state at �0 = 0 occurs at an
energy ∓Eb. Even more importantly, the trend of the in-gap
impurity energy with �0/�1 does not change with the sign of
V0. Again, the in-gap state only appears in the QSH phase.

B. Continuum limit

In order to obtain some analytical insight of the one
to one relation between the existence of in-gap states and
the topological phase, we have worked out Eq. (7) in the
continuum limit, in which only states close to the two Dirac
points are included. Their crystal Hamiltonian is then given by

H0(�k,σ,s) = h̄vF (kxτx + σkyτy) + �0

2
τz + �1

2
sστz. (9)

For this model it is possible to obtain a closed analytical
expression for Eq. (8):

1

V0
= a2

2π (h̄vF )2

∑
sτ=±

(γsτ −Eb) log

[
1 + ε2

c

γ 2
sτ − E2

b

]
, (10)

where εc is the cutoff energy.27 The sum over sτ reflects, for
a given spin orientation, the contributions coming from both
valleys. In the strong coupling limit, V −1

0 is negligible and the
existence of an in-gap solution of Eq. (10) requires that the right
hand side sum vanishes. Since γ+ − Eb is always positive, Eb

must satisfy γ− < Eb, which, by definition of in-gap state, is
only satisfied in the QSH phase and not in the normal phase
(see lower panel of Fig. 1). Thus, the continuum model also
has the one on one relation between topological order and the
emergence of in-gap impurity states. The numerical solution
of Eq. (10) is shown in Fig. 1 for V −1

0 = 0. The energy cut-off
εc = 0.3t was chosen to fit the lattice model results. In general,
good agreement between the two models should only occur
for extended in-gap states, which occur Eb close to one of the
bands.

IV. IMPURITY SPIN CURRENT

In this section we calculate the spin current associated to
the presence of the impurity potential. The current is given
by the contributions of all occupied states, that includes both
the in-gap state and the valence band states. For the former
it is possible to obtain a simple closed expression of its wave
function, which permits a straightforward calculation of the
current. For the band state make use of the Green function
formalism, which permits an exact evaluation of the current
induced by the impurity.

A. In-gap state wave function

The Green’s function formalism provides a closed expres-
sion for the in-gap wave function in terms of their binding
energy Eb, obtained from Eq. (7), and the unperturbed Green
function:19

|φb〉 =
(

−dG0
00(Eb)

dE

)− 1
2 ∑

i

G0
i,0(Eb)|i〉. (11)

We consider the case �0 = 0 and V −1
0 = 10−6t . Expectedly,

the in-gap wave function is localized around the impurity site,
as shown in Fig. 2. Interestingly, the in-gap states is not fully
sublattice polarized, in contrast with zero energy states in
bipartite Hamiltonians.28 Thus, we have 〈φb|σz|φb〉 
 0.56,
significantly below 1. We also find, analytically, that the wave
function in the impurity sublattice is purely imaginary, while
for the other sublattice is purely real. In the reciprocal space it
is also true that the wave function has unequal weight on both
valleys, but is not fully valley polarized. Both the incomplete
sublattice and valley polarizations are quantitatively different
from spin-filter edge states in zigzag ribbons for the same
model, which are fully sublattice and valley polarized. In
contrast, the most salient feature of the edge states is also
present for the topological in-gap impurity states: they carry
current, which is quite unusual for a localized state.
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FIG. 2. (Color online) Local density of states as a bar in a
exponential scale. The in-set shows the impurity-induced current
between links for the state at Eb. The impurity site is shown in
yellow.

B. Calculation of the current

The current operator is defined at the bonds of the tight-
binding Hamiltonian imposing the continuity equation. For a
given pair of sites n and m in the lattice, the current operator
reads29 Ĵnm = jnm|n〉〈m| − jmn|m〉〈n|, where jmn = etnm/ih̄

and tnm is the Hamiltonian matrix element 〈n|H0|m〉. Thus,
the current carried by bound states reads

I bound
nm = e

h̄
Im[tnmφ∗

b (m)φb(n)]. (12)

The map of the current is shown, for a given spin, in the
inset of Fig. 2, for tso = 0.1t , �0 = 0, V0 = 106t . Although
the in-gap state is more localized in the B sublattice, opposite
to the impurity site, the current is larger in the AB bonds
than in the BB bonds because t = 10tso. For the opposite
spin, the current flow changes sign so that the net current is
zero but the spin-current is not. We have also verified that,
when the impurity site is in the other sublattice, the current
flow is inverted. Thus, the in-gap states have dissipationless
spin-currents whose chirality is determined by the sublattice
at which the impurity resides.

The observable current probed experimentally would be
given by the contribution of all occupied states, which includes
both the in-gap state and the valence band, whose density of
states are shown in the upper inset of Fig. 3. The contribution
to the current from the band states reads

I band
nm ≡ −1

π

∫ γ−

−∞
Im [Gnm(E)jmn − Gmn(E)jnm] dE, (13)

where G is the full Green function whose closed form is given
in Eq. (4). Thus, there are two contributions to the current,
one given by the band states and the other given by the in-gap
states. We plot both them in Fig. 3, for �0 = 0, as a function of
the impurity strength, V0. They have opposite signs and, in the
strong V0 limit, cancel each other. The evolution of Eb(V0) is
shown in the lower inset. In that limit the impurity bound state
becomes a midgap state Eb = 0 and the spectrum recovers
electron-hole symmetry, for which ground state currents are
not possible.30 The cancellation of the edge current due to the
contribution of the bulk states takes also place in the case of

FIG. 3. (Color online) Bound, band and total current in an AB

bond, as a function of V0. Upper inset: density of states on B

sublattice. Lower inset: evolution of Eb(V0) for �0 = 0.

ribbons. However, a finite nonzero spin-current is obtained in
our case for a wide range of V0 close to what it is expected for
absorption of atomic hydrogen in graphene.

V. DISCUSSION AND CONCLUSIONS

We now connect our results with previous work on related
systems. Although they are superficially similar to the mid gap
states of a domain wall of polyacetylene,31 the impurity in-gap
states do not give rise to charge fractionalization. This can be
understood as follows. Together with the in-gap solution of
Eq. (5) where Eb 
 V −1

0 , there is always a second solution
with energy Eb 
 V0. Thus, there are two states outside of the
bands, and not only one as in the case of Su-Schrieffer-Heeger
solitons,31 so that both bands lose a complete state.

Recent theory work has shown that vacancies induce
in-gap states both in a different model for a two-dimensional
topological insulator,32 and for the Kane-Mele-Fu33 model for
a three-dimensional topological insulator.34 However, in-gap
impurity states can be found in graphene-based conventional
insulators, like one-dimensional armchair graphene ribbons,28

and two-dimensional graphane,35 although they are not ex-
pected to carry spin currents.

In conclusion, we have shown that two-dimensional topo-
logical insulators can be distinguished from conventional
insulators by the radically different electronic properties of
their impurity states. Within the Kane-Mele model, we have
shown that in-gap impurity states appear only in the case
topologically nontrivial or quantum spin Hall phase8,9 and not
in the normal phase. These topological in-gap impurity states
carry a net spin-current which, due to the single occupancy of
the state, is upgraded to a net current or orbital magnetization.
Therefore, we propose that the topological nature of this type of
insulators can be established by local probes of the electronic
properties of these defects, as opposed to the highly nonlocal
probes required to test quantized transport of the edge states.
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