469 research outputs found

    The massless supersymmetric ladder with L rungs

    Full text link
    We show that in the massless N=1 supersymmetric Wess-Zumino theory it is possible to devise a computational strategy by which the x-space calculation of the ladder 4-point correlators can be carried out without introducing any regularization. As an application we derive a representation valid at all loop orders in terms of conformal invariant integrals. We obtain an explicit expression of the 3-loop ladder diagram for collinear external points.Comment: LaTeX, 17 pages, 8 figure

    Parallel computing and molecular dynamics of biological membranes

    Get PDF
    In this talk I discuss the general question of the portability of Molecular Dynamics codes for diffusive systems on parallel computers of the APE family. The intrinsic single precision arithmetics of the today available APE platforms does not seem to affect the numerical accuracy of the simulations, while the absence of integer addressing from CPU to individual nodes puts strong constraints on the possible programming strategies. Liquids can be very satisfactorily simulated using the "systolic" method. For more complex systems, like the biological ones at which we are ultimately interested in, the "domain decomposition" approach is best suited to beat the quadratic growth of the inter-molecular computational time with the number of elementary components of the system. The promising perspectives of using this strategy for extensive simulations of lipid bilayers are briefly reviewed.Comment: 4 pages LaTeX, 2 figures included, espcrc2.sty require

    Non-perturbative renormalization in kaon decays

    Get PDF
    We discuss the application of the MPSTV non-perturbative method \cite{NPM} to the operators relevant to kaon decays. This enables us to reappraise the long-standing question of the ΔI=1/2\Delta I=1/2 rule, which involves power-divergent subtractions that cannot be evaluated in perturbation theory. We also study the mixing with dimension-six operators and discuss its implications to the chiral behaviour of the BKB_K parameter.Comment: Talk presented at LATTICE96(improvement), LaTeX 3 pages, uses espcrc2, 2 postscript figure

    Gauge equivalence in QCD: the Weyl and Coulomb gauges

    Full text link
    The Weyl-gauge (A0a=0)A_0^a=0) QCD Hamiltonian is unitarily transformed to a representation in which it is expressed entirely in terms of gauge-invariant quark and gluon fields. In a subspace of gauge-invariant states we have constructed that implement the non-Abelian Gauss's law, this unitarily transformed Weyl-gauge Hamiltonian can be further transformed and, under appropriate circumstances, can be identified with the QCD Hamiltonian in the Coulomb gauge. We demonstrate an isomorphism that materially facilitates the application of this Hamiltonian to a variety of physical processes, including the evaluation of SS-matrix elements. This isomorphism relates the gauge-invariant representation of the Hamiltonian and the required set of gauge-invariant states to a Hamiltonian of the same functional form but dependent on ordinary unconstrained Weyl-gauge fields operating within a space of ``standard'' perturbative states. The fact that the gauge-invariant chromoelectric field is not hermitian has important implications for the functional form of the Hamiltonian finally obtained. When this nonhermiticity is taken into account, the ``extra'' vertices in Christ and Lee's Coulomb-gauge Hamiltonian are natural outgrowths of the formalism. When this nonhermiticity is neglected, the Hamiltonian used in the earlier work of Gribov and others results.Comment: 25 page

    Baryon Number Fluctuation and the Quark-Gluon Plasma

    Get PDF
    We show that ωB\omega_B or ωBˉ\omega_{\bar B}, the squared baryon or antibaryon number fluctuation per baryon or antibaryon, is a possible signature for the quark-gluon plasma that is expected to be created in relativistic heavy ion collisions, as it is a factor of three smaller than in an equilibrated hadronic matter due to the fractional baryon number of quarks. Using kinetic equations with exact baryon number conservation, we find that their values in an equilibrated matter are half of those expected from a Poisson distribution. Effects due to finite acceptance and non-zero net baryon number are also studied.Comment: discussion and references added, version to appear in PR

    A 0-dimensional counter-example to rooting?

    Full text link
    We provide an example of a 0-dimensional field theory where rooting does not work.Comment: 3 pages; Physics Letters B (2010

    The continuum limit of the quark mass step scaling function in quenched lattice QCD

    Full text link
    The renormalisation group running of the quark mass is determined non-perturbatively for a large range of scales, by computing the step scaling function in the Schroedinger Functional formalism of quenched lattice QCD both with and without O(a) improvement. A one-loop perturbative calculation of the discretisation effects has been carried out for both the Wilson and the Clover-improved actions and for a large number of lattice resolutions. The non-perturbative computation yields continuum results which are regularisation independent, thus providing convincing evidence for the uniqueness of the continuum limit. As a byproduct, the ratio of the renormalisation group invariant quark mass to the quark mass, renormalised at a hadronic scale, is obtained with very high accuracy.Comment: 23 pages, 3 figures; minor changes, references adde

    New results in the deformed N=4 SYM theory

    Get PDF
    We investigate various perturbative properties of the deformed N=4 SYM theory. We carry out a three-loops calculation of the chiral matter superfield propagator and derive the condition on the couplings for maintaining finiteness at this order. We compute the 2-, 3- and 4-point functions of composite operators of dimension 2 at two loops. We identify all the scalar operators (chiral and non-chiral) of bare dimension 4 with vanishing one-loop anomalous dimension. We compute some 2- and 3-point functions of these operators at two loops and argue that the observed finite corrections cannot be absorbed by a finite renormalization of the operators.Comment: LaTeX, 16 pages, 1 figure; references added; typos corrected; final version to appear in Nucl. Phys.

    Twisted-mass lattice QCD with mass non-degenerate quarks

    Get PDF
    The maximally twisted lattice QCD action of an SUf(2)SU_f(2) doublet of mass degenerate Wilson quarks gives rise to a real positive fermion determinant and it is invariant under the product of standard parity times the change of sign of the coefficient of the Wilson term. The existence of this spurionic symmetry implies that O(aa) improvement is either automatic or achieved through simple linear combinations of quantities taken with opposite external three-momenta. We show that in the case of maximal twist all these nice results can be extended to the more interesting case of a mass non-degenerate quark pair.Comment: 10 pages (due to different LateX style), Latex file, based on a talk presented by G.C. Rossi at LHP2003 - Cairns. Reasons for replacement: Correction of the transformation properties of energies under r --> -r. Minor changes in Appendix
    • …
    corecore