650 research outputs found
Understanding the proton's spin structure
We discuss the tremendous progress that has been towards an understanding of
how the spin of the proton is distributed on its quark and gluon constituents.
This is a problem that began in earnest twenty years ago with the discovery of
the proton ``spin crisis'' by the European Muon Collaboration. The discoveries
prompted by that original work have given us unprecedented insight into the
amount of spin carried by polarized gluons and the orbital angular momentum of
the quarks.Comment: Review article for J. Phys. G, 1 figure, 22 page
Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam
We present the results of the first exposure of a Liquid Argon TPC to a
multi-GeV neutrino beam. The data have been collected with a 50 liters
ICARUS-like chamber located between the CHORUS and NOMAD experiments at the
CERN West Area Neutrino Facility (WANF). We discuss both the instrumental
performance of the detector and its capability to identify and reconstruct low
multiplicity neutrino interactions.Comment: 14 pages, 12 figures. Submitted for publication to Physical Review
The ArDM experiment
The aim of the ArDM project is the development and operation of a one ton
double-phase liquid argon detector for direct Dark Matter searches. The
detector measures both the scintillation light and the ionization charge from
ionizing radiation using two independent readout systems. This paper briefly
describes the detector concept and presents preliminary results from the ArDM
R&D program, including a 3 l prototype developed to test the charge readout
system.Comment: Proceedings of the Epiphany 2010 Conference, to be published in Acta
Physica Polonica
Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD)of the T2K experiment
The T2K neutrino experiment at J-PARC uses a set of near detectors to measure
the properties of an unoscillated neutrino beam and neutrino interaction
cross-sections. One of the sub-detectors of the near-detector complex, the side
muon range detector (SMRD), is described in the paper. The detector is designed
to help measure the neutrino energy spectrum, to identify background and to
calibrate the other detectors. The active elements of the SMRD consist of 0.7
cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet
yokes. The readout of each scintillator slab is provided through a single WLS
fiber embedded into a serpentine shaped groove. Two Hamamatsu multi-pixel
avalanche photodiodes (MPPC's) are coupled to both ends of the WLS fiber. This
design allows us to achieve a high MIP detection efficiency of greater than
99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a
spatial resolution along the slab better than 10 cm were obtained for the SMRD
counters.Comment: 7 pages, 4 figures; talk at TIPP09, March 12-17, Tsukuba, Japan; to
be published in the conference proceeding
The T2K Side Muon Range Detector
The T2K experiment is a long baseline neutrino oscillation experiment aiming
to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam
is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed
with the 295 km distant Super- Kamiokande Detector and monitored by a suite of
near detectors at 280m from the proton target. The near detectors include a
magnetized off-axis detector (ND280) which measures the un-oscillated neutrino
flux and neutrino cross sections. The present paper describes the outermost
component of ND280 which is a side muon range detector (SMRD) composed of
scintillation counters with embedded wavelength shifting fibers and Multi-Pixel
Photon Counter read-out. The components, performance and response of the SMRD
are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference
First results on light readout from the 1-ton ArDM liquid argon detector for dark matter searches
ArDM-1t is the prototype for a next generation WIMP detector measuring both
the scintillation light and the ionization charge from nuclear recoils in a
1-ton liquid argon target. The goal is to reach a minimum recoil energy of
30\,keVr to detect recoiling nuclei. In this paper we describe the experimental
concept and present results on the light detection system, tested for the first
time in ArDM on the surface at CERN. With a preliminary and incomplete set of
PMTs, the light yield at zero electric field is found to be between 0.3-0.5
phe/keVee depending on the position within the detector volume, confirming our
expectations based on smaller detector setups.Comment: 14 pages, 10 figures, v2 accepted for publication in JINS
Measurement of the branching ratios of the decays Xi0 --> Sigma+ e- nubar and anti-Xi0 --> anti-Sigma+ e+ nu
From 56 days of data taking in 2002, the NA48/1 experiment observed 6316 Xi0
--> Sigma+ e- nubar candidates (with the subsequent Sigma+ --> p pi0 decay) and
555 anti-Xi0 --> anti-Sigma+ e+ nu candidates with background contamination of
215+-44 and 136+-8 events, respectively. From these samples, the branching
ratios BR(Xi0 --> Sigma+ e- nubar)= (2.51+-0.03stat+-0.09syst)E(-4) and
BR(anti-Xi0 --> anti-Sigma+ e+ nu)= (2.55+-0.14stat+-0.10syst)E(-4) were
measured allowing the determination of the CKM matrix element |Vus| =
0.209+0.023-0.028. Using the Particle Data Group average for |Vus| obtained in
semileptonic kaon decays, we measured the ratio g1/f1 = 1.20+-0.05 of the
axial-vector to vector form factors.Comment: 16 pages, 11 figures Submitted to Phys.Lett.
The ICARUS T600 Experiment in the Gran Sasso Underground Laboratory
With a mass of about 600 tons of Liquid Argon (LAr), the ICARUS T600 detector is the biggest, up to now, LAr Time Projection Chamber (TPC). Following its successful test run, on the Earth surface, in Pavia (Italy) in 2001, the detector is now very close to start data taking in the Gran Sasso underground laboratory. The main features of the LAr TPC technique, together with a short discussion of some of the ICARUS T600 test run results, are presented in this paper
First observation of the KS->pi0 gamma gamma decay
Using the NA48 detector at the CERN SPS, 31 KS->pi0 gamma gamma candidates
with an estimated background of 13.7 +- 3.2 events have been observed. This
first observation leads to a branching ratio of BR(KS->pi0 gamma gamma) = (4.9
+- 1.6(stat) +- 0.9(syst)) x 10^-8 in agreement with Chiral Perturbation theory
predictions.Comment: 10 pages, 4 figures submitted to Phys. Lett.
Search for CP violation in K0 -> 3 pi0 decays
Using data taken during the year 2000 with the NA48 detector at the CERN SPS,
a search for the CP violating decay K_S -> 3 pi0 has been performed. From a fit
to the lifetime distribution of about 4.9 million reconstructed K0/K0bar -> 3
pi0 decays, the CP violating amplitude eta_000 = A(K_S -> 3 pi0)/A(K_L -> 3
pi0) has been found to be Re(eta_000) = -0.002 +- 0.011 +- 0.015 and
Im(eta_000) = -0.003 +- 0.013 +- 0.017. This corresponds to an upper limit on
the branching fraction of Br(K_S -> 3 pi0) < 7.4 x 10^-7 at 90% confidence
level. The result is used to improve knowledge of Re(epsilon) and the CPT
violating quantity Im(delta) via the Bell-Steinberger relation.Comment: 18 pages, 7 figures, submitted to Phys. Lett.
- âŠ