9,673 research outputs found
Experimental comparison of methods for simultaneous selection of two correlated traits in Tribolium. 2. Index selection and independent culling levels: a replicated single generation test
International audienc
Recommended from our members
Complementary Metagenomic Approaches Improve Reconstruction of Microbial Diversity in a Forest Soil.
Soil ecosystems harbor diverse microorganisms and yet remain only partially characterized as neither single-cell sequencing nor whole-community sequencing offers a complete picture of these complex communities. Thus, the genetic and metabolic potential of this "uncultivated majority" remains underexplored. To address these challenges, we applied a pooled-cell-sorting-based mini-metagenomics approach and compared the results to bulk metagenomics. Informatic binning of these data produced 200 mini-metagenome assembled genomes (sorted-MAGs) and 29 bulk metagenome assembled genomes (MAGs). The sorted and bulk MAGs increased the known phylogenetic diversity of soil taxa by 7.2% with respect to the Joint Genome Institute IMG/M database and showed clade-specific sequence recruitment patterns across diverse terrestrial soil metagenomes. Additionally, sorted-MAGs expanded the rare biosphere not captured through MAGs from bulk sequences, exemplified through phylogenetic and functional analyses of members of the phylum Bacteroidetes Analysis of 67 Bacteroidetes sorted-MAGs showed conserved patterns of carbon metabolism across four clades. These results indicate that mini-metagenomics enables genome-resolved investigation of predicted metabolism and demonstrates the utility of combining metagenomics methods to tap into the diversity of heterogeneous microbial assemblages.IMPORTANCE Microbial ecologists have historically used cultivation-based approaches as well as amplicon sequencing and shotgun metagenomics to characterize microbial diversity in soil. However, challenges persist in the study of microbial diversity, including the recalcitrance of the majority of microorganisms to laboratory cultivation and limited sequence assembly from highly complex samples. The uncultivated majority thus remains a reservoir of untapped genetic diversity. To address some of the challenges associated with bulk metagenomics as well as low throughput of single-cell genomics, we applied flow cytometry-enabled mini-metagenomics to capture expanded microbial diversity from forest soil and compare it to soil bulk metagenomics. Our resulting data from this pooled-cell sorting approach combined with bulk metagenomics revealed increased phylogenetic diversity through novel soil taxa and rare biosphere members. In-depth analysis of genomes within the highly represented Bacteroidetes phylum provided insights into conserved and clade-specific patterns of carbon metabolism
Estatus de la gestión de riesgos climáticos en el sector agroalimentario y su importancia para la seguridad alimentaria y nutricional en Honduras
Honduras ha sido identificado como el país con mayor vulnerabilidad en términos de riesgo, variabilidad y cambio climático de Centroamérica; es por esto que la Secretaría de Agricultura y Ganadería (SAG) en colaboración con el Programa de Investigación de CGIAR en Cambio
Climático, Agricultura y Seguridad Alimentaria (CCAFS) en América Latina y con apoyo del Consejo Agropecuario Centroamericano (CAC) presentan el estatus de la investigación en cambio climático, agricultura y seguridad alimentaria, así como el marco gubernamental y actores involucrados en torno a esta temática. El documento evidencia que el país cuenta con una estructura legal e
institucional que promueve políticas y acciones orientadas a contrarrestar los efectos negativos de éste fenómeno, colaborando continuamente con organizaciones internacionales, academia y sector privado, sin embargo se mantiene en continuo proceso de desarrollo y mejora para incrementar la resiliencia y adaptación al cambio climático así como la mitigación del sector agrícola hondureño
Quantum fluctuations in high field magnetization of 2D square lattice J1-J2 antiferromagnets
The J1-J2 square lattice Heisenberg model with spin S=1/2 has three phases
with long-range magnetic order and two unconventionally ordered phases
depending on the ratio of exchange constants. It describes a number of recently
found layered vanadium oxide compounds. A simple means of investigating the
ground state is the study of the magnetization curve and high-field
susceptibility. We discuss these quantities by using the spin-wave theory and
the exact diagonalization in the whole J1-J2 plane. We compare both results and
find good overall agreement in the sectors of the phase diagram with magnetic
order. Close to the disordered regions the magnetization curve shows strong
deviations from the classical linear behaviour caused by large quantum
fluctuations and spin-wave approximation breaks down. On the FM side (J1<0)
where one approaches the quantum gapless spin nematic ground state this region
is surprisingly large. We find that inclusion of second order spin-wave
corrections does not lead to fundamental improvement. Quantum corrections to
the tilting angle of the ordered moments are also calculated. They may have
both signs, contrary to the always negative first order quantum corrections to
the magnetization. Finally we investigate the effect of the interlayer coupling
and find that the quasi-2D picture remains valid up to |J_\perp/J1| ~ 0.3.Comment: 13 pages, 6figure
Recommended from our members
Impact of Mesoporous Silicon Template Pore Dimension and Surface Chemistry on Methylammonium Lead Trihalide Perovskite Photophysics
© 2020 Wiley-VCH GmbH In influencing fundamental properties—and ultimately device performance—of lead halide perovskites, interfacial interactions play a major role, notably with regard to carrier diffusion and recombination. Here anodized porous Si (pSi) as well as porous silica particles are employed as templates for formation of methylammonium lead trihalide nanostructures. This allows synthesis of relatively small perovskite domains and comparison of associated interfacial chemistry between as-prepared hydrophobic hydrideterminated functionalities and hydrophilic oxide-terminated surfaces. While physical confinement of MAPbBr3 has a uniform effect on carrier lifetime, pore size (7–18 nm) of the silicon-containing template has a sensitive influence on perovskite photoluminescence (PL) wavelength maximum. Furthermore, identity of the surface functionality of the template significantly alters the PL quantum efficiency, with lowest PL intensity associated with the H-terminated pSi and the most intense PL affiliated with the oxideterminated pSi surface. These effects are explored for green-emitting MAPbBr3 as well as infrared-emitting MAPbI3. In addition, the role of silicon surface chemistry on the time-dependent stability of these perovskites packaged within a given mesoporous template is also evaluated, specifically, a lack of miscibility between MAPbI3 and the H-terminated pSi template results in a diffusion of this specific perovskite composition eluting from this porous matrix over time
Assessment of the Quality of Safety Cases: A Research Preview
Proceedings of the 25th International Working Conference, REFSQ 2019, Essen, Germany, March 18–21, 2019.[Context and motivation] Safety-critical systems in application domains such as aerospace, automotive, healthcare, and railway are subject to assurance processes to provide confidence that the systems do not pose undue risks to people, property, or the environment. The development of safety cases is usually part of these processes to justify that a system satisfies its safety requirements and thus is dependable. [Question/problem] Although safety cases have been used in industry for over two decades, their management still requires improvement. Important weaknesses have been identified and means to assess the quality of safety cases are limited. [Principal ideas/results] This paper presents a research preview on the assessment of the quality of safety cases. We explain how the area should develop and present our preliminary work towards enabling the assessment with Verification Studio, an industrial tool for system artefact quality analysis. [Contribution] The insights provided allow researchers and practitioners to gain an understanding of why safety case quality requires further investigation, what aspects must be considered, and how quality assessment could be performed in practice.The research leading to this paper has received funding from the AMASS project (H2020-ECSEL ID 692474; Spain’s MINECO ref. PCIN-2015-262). We also thank REFSQ reviewers for their valuable comments to improve the paper
Methane storms as a driver of Titan's dune orientation
Titan's equatorial regions are covered by eastward propagating linear dunes.
This direction is opposite to mean surface winds simulated by Global Climate
Models (GCMs), which are oriented westward at these latitudes, similar to trade
winds on Earth. Different hypotheses have been proposed to address this
apparent contradiction, involving Saturn's gravitational tides, large scale
topography or wind statistics, but none of them can explain a global eastward
dune propagation in the equatorial band. Here we analyse the impact of
equinoctial tropical methane storms developing in the superrotating atmosphere
(i.e. the eastward winds at high altitude) on Titan's dune orientation. Using
mesoscale simulations of convective methane clouds with a GCM wind profile
featuring superrotation, we show that Titan's storms should produce fast
eastward gust fronts above the surface. Such gusts dominate the aeolian
transport, allowing dunes to extend eastward. This analysis therefore suggests
a coupling between superrotation, tropical methane storms and dune formation on
Titan. Furthermore, together with GCM predictions and analogies to some
terrestrial dune fields, this work provides a general framework explaining
several major features of Titan's dunes: linear shape, eastward propagation and
poleward divergence, and implies an equatorial origin of Titan's dune sand.Comment: Published online on Nature Geoscience on 13 April 201
Three-Dimensional Handheld Scanning to Quantify Head-Shape Changes in Spring-Assisted Surgery for Sagittal Craniosynostosis
Three-dimensional (3D) imaging is an important tool for diagnostics, surgical planning, and evaluation of surgical outcomes in craniofacial procedures. Gold standard for acquiring 3D imaging is computed tomography that entails ionizing radiations and, in young children, a general anaesthesia. Three-dimensional photographic imaging is an alternative method to assess patients who have undergone calvarial reconstructive surgery. The aim of this study was to assess the utility of 3D handheld scanning photography in a cohort of patients who underwent spring-assisted correction surgery for scaphocephaly. Pre- and postoperative 3D scans acquired in theater and at the 3-week follow-up in clinic were postprocessed for 9 patients. Cephalic index (CI), head circumference, volume, sagittal length, and coronal width over the head at pre-op, post-op, and follow-up were measured from the 3D scans. Cephalic index from 3D scans was compared with measurements from planar x-rays. Statistical shape modeling (SSM) was used to calculate the 3D mean anatomical head shape of the 9 patients at the pre-op, post-op, and follow-up. No significant differences were observed in the CI between 3D and x-ray. Cephalic index, volume, and coronal width increased significantly over time. Mean shapes from SSM visualized the overall and regional 3D changes due to the expansion of the springs in situ. Three-dimensional handheld scanning followed by SSM proved to be an efficacious and practical method to evaluate 3D shape outcomes after spring-assisted cranioplasty in individual patients and the population
- …