4,670 research outputs found

    Spin configuration in a frustrated ferromagnetic/antiferromagnetic thin film system

    Full text link
    We have studied the magnetic configuration in ultrathin antiferromagnetic Mn films grown around monoatomic steps on an Fe(001) surface by spin-polarized scanning tunneling microscopy/spectroscopy and ab-initio-parametrized self-consistent real-space tight binding calculations in which the spin quantization axis is independent for each site thus allowing noncollinear magnetism. Mn grown on Fe(001) presents a layered antiferromagnetic structure. In the regions where the Mn films overgrows Fe steps the magnetization of the surface layer is reversed across the steps. Around these defects a frustration of the antiferromagnetic order occurs. Due to the weakened magnetic coupling at the central Mn layers, the amount of frustration is smaller than in Cr and the width of the wall induced by the step does not change with the thickness, at least for coverages up to seven monolayers.Comment: 10 pages, 5 figure

    A graceful multiversal link of particle physics to cosmology

    Get PDF
    In this paper we work out a multiverse scenario whose physical characteristics enable us to advance the following the conjecture that whereas the physics of particles and fields is confined to live in the realm of the whole multiverse formed by finite-time single universes, that for our observable universe must be confined just in one of the infinite number of universes of the multiverse when such a universe is consistently referred to an infinite cosmic time. If this conjecture is adopted then some current fundamental problems that appear when one tries to make compatible particle physics and cosmology- such as that for the cosmological constant, the arrow of time and the existence of a finite proper size of the event horizon- can be solved.Comment: 10 pages, LaTe

    A dark energy multiverse

    Get PDF
    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunchs or big rips singularities. Classicaly these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe

    An extreme proto-cluster of luminous dusty starbursts in the early Universe

    Get PDF
    We report the identification of an extreme proto-cluster of galaxies in the early Universe whose core (nicknamed Distant Red Core, DRC) is formed by at least ten dusty star-forming galaxies (DSFGs), confirmed to lie at zspec=4.002z_{\rm spec} = 4.002 via detection of [CI](1-0), 12^{12}CO(6-5), 12^{12}CO(4-3), 12^{12}CO(2-1) and H2O(211202){\rm H_2O} (2_{11} - 2_{02}) emission lines, detected using ALMA and ATCA. The spectroscopically-confirmed components of the proto-cluster are distributed over a 260kpc×310kpc{\rm 260\, kpc \times 310\, kpc} region and have a collective obscured star-formation rate (SFR) of 6500Myr1\sim 6500 \, M_\odot \, {\rm yr}^{-1}, considerably higher than has been seen before in any proto-cluster of galaxies or over-densities of DSFGs at z4z \gtrsim 4. Most of the star formation is taking place in luminous DSFGs since no Lyα\alpha emitters are detected in the proto-cluster core, apart from a Lyα\alpha blob located next to one of the DRC dusty components and extending over 60kpc60\,{\rm kpc}. The total obscured SFR of the proto-cluster could rise to SFR14,400Myr1{\rm SFR} \sim 14,400 \, M_\odot \, {\rm yr}^{-1} if all the members of an over-density of bright DSFGs discovered around DRC in a wide-field LABOCA 870-μ\mum image are part of the same structure. The total halo mass of DRC could be as high as 4.4×1013M\sim 4.4 \times 10^{13}\,M_\odot and could be the progenitor of a Coma-like cluster at z=0z = 0. The relatively short gas-depletion times of the DRC components suggest either the presence of a mechanism able to trigger extreme star formation simultaneously in galaxies spread over a few hundred kpc or the presence of gas flows from the cosmic web able to sustain star formation over several hundred million years.Comment: Submitted to ApJ. Minor updates added, including a change of the source name. Comments welcom

    Bose-Einstein condensate dark matter phase transition from finite temperature symmetry breaking of Klein-Gordon fields

    Full text link
    In this paper the thermal evolution of scalar field dark matter particles at finite cosmological temperatures is studied. Starting with a real scalar field in a thermal bath and using the one loop quantum corrections potential, we rewrite Klein-Gordon's (KG) equation in its hydrodynamical representation and study the phase transition of this scalar field due to a Z_2 symmetry breaking of its potential. A very general version of a nonlinear Schr\"odinger equation is obtained. When introducing Madelung's representation, the continuity and momentum equations for a non-ideal SFDM fluid are formulated, and the cosmological scenario with the SFDM described in analogy to an imperfect fluid is then considered where dissipative contributions are obtained in a natural way.Additional terms appear compared to those obtained in the classical version commonly used to describe the \LambdaCDM model, i.e., the ideal fluid. The equations and parameters that characterize the physical properties of the system such as its energy, momentum and viscous flow are related to the temperature of the system, scale factor, Hubble's expansion parameter and the matter energy density. Finally, some details on how galaxy halos and smaller structures might be able to form by condensation of this SF are given.Comment: Substantial changes have been made to the paper, following the referees recommendations. 16 pages. Published in Classical and Quantum Gravit

    S-duality in Twistor Space

    Get PDF
    In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space MHM_H must carry an isometric action of the modular group SL(2,Z), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of MHM_H, and construct a general class of SL(2,Z)-invariant quaternion-Kahler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include MHM_H corrected by D3-D1-D(-1)-instantons (with fivebrane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional N=2 gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.Comment: 29 pages, 1 figur

    D3-instantons, Mock Theta Series and Twistors

    Get PDF
    The D-instanton corrected hypermultiplet moduli space of type II string theory compactified on a Calabi-Yau threefold is known in the type IIA picture to be determined in terms of the generalized Donaldson-Thomas invariants, through a twistorial construction. At the same time, in the mirror type IIB picture, and in the limit where only D3-D1-D(-1)-instanton corrections are retained, it should carry an isometric action of the S-duality group SL(2,Z). We prove that this is the case in the one-instanton approximation, by constructing a holomorphic action of SL(2,Z) on the linearized twistor space. Using the modular invariance of the D4-D2-D0 black hole partition function, we show that the standard Darboux coordinates in twistor space have modular anomalies controlled by period integrals of a Siegel-Narain theta series, which can be canceled by a contact transformation generated by a holomorphic mock theta series.Comment: 42 pages; discussion of isometries is amended; misprints correcte

    Digestibility and IgE-Binding of Glycosylated Codfish Parvalbumin

    Get PDF
    Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa), the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgEbinding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein’s digestibility is not affected by such processing

    Global and regional IUCN red list assessments: 4

    Get PDF
    In this contribution, the conservation status assessments of three vascular plants are presented following to IUCN categories and criteria. It includes the assessment at global level of Saxifraga caprariae Mannocci, Ferretti, Mazzoncini & Viciani and S. montis-christi Mannocci, Ferretti, Mazzoncini & Viciani and the regional assessment of Halocnemum cruciatum (Forssk.) Tod. (Spain)
    corecore